
Probabilistic Models for Invariant
Representations and

Transformations

Von der Fakultät für Mathematik und Naturwissenschaften der Carl von Ossietzky
Universität Oldenburg zur Erlangung des Grades

Doktor der Naturwissenschaften (Dr. rer. nat.)
angenommene Dissertation

von Herrn Georgios Exarchakis

geboren am 02. Februar 1985 in Larisa, Griechenland

georgios.exarchakis@uol.de

Erstgutachter: Prof. Dr. Jörg Lücke
Zweitgutachter: Prof. Dr. Bruno Olshausen
Tag der Disputation: 01. Dezember 2016

2

Abstract

English version
The central task of machine learning research is to extract regularities from data. These
regularities are often subject to transformations that arise from the complexity of the pro-
cess that generates the data. There has been a lot of effort towards creating data rep-
resentations that are invariant to such transformations. However, most research towards
learning invariances does not model the transformations explicitly.

My research is focused towards modeling data in ways that separate their “content”
from the potential “transformations” it undergoes. I primarily used a probabilistic gener-
ative framework due to its high expressive power and the belief that any potential repre-
sentation will be subject to uncertainty. To model data content I focused on sparse coding
techniques due to their ability to extract highly specialized dictionaries. I defined and
implemented a discrete sparse coding model that models the presence/absence of a dic-
tionary element subject to finite set of scaling transformations. I extended the discrete
sparse coding model with an explicit representation for temporal shifts that learns time-
invariant representations for the data without loss of temporal alignment. In an attempt to
create a more general model for data transformations, I defined a neural network that uses
gating units to encode transformations from pairs of datapoints. Furthermore, I defined a
non-linear dynamical system that expresses the dynamics in terms of a bilinear transfor-
mation that combines the previous state and a variable that encodes the transformation to
generate the current state.

In order to examine the behavior of these models in practice I tested them with on a
variety of tasks. Almost always, I tested the models on recovering parameters from artifi-
cially generated data. Furthermore, I discovered interesting properties in the encoding of
natural images, extra-cellular neural recordings, and audio data.

i

German version
Die Hauptaufgabe des maschinellen Lernens ist es, aus gegebenen Daten Regelmäßigkeiten
zu extrahieren. Diese Regelmäßigkeiten unterliegen oftmals verschiedenen Transforma-
tionen, die der Komplexität des Prozesses geschuldet sind, der die Daten erzeugt. In der
Vergangenheit wurde viel Aufwand betrieben um Repräsentationen zu lernen, die invari-
ant gegenüber solchen Transformationen sind. In den meisten Fällen werden jedoch beim
Lernen solcher Invarianten die Transformationen nicht explizit berücksichtigt.

Der Schwerpunkt meiner Arbeit liegt darin, gegebene Daten so zu modellieren, dass
der “Inhalt” und die möglichen “Transformationen”, die der Inhalt durchläuft, voneinan-
der getrennt werden können. Dabei habe ich hauptsächlich ein probabilistisches gen-
eratives Framework benutzt. Und zwar einerseits, weil es eine hohe Ausdruckskraft
besitzt und andererseits aus dem Glauben heraus, dass jegliche mögliche Repräsenta-
tion der Daten immer auch eine gewisse Unsicherheit enthält. Um den Inhalt der Daten
zu modellieren, verwende ich sogenannte “sparse coding” (dt. “spärliche Kodierung”)
Techniken, die es erlauben hoch spezialisierte Lexika zu extrahieren. Hierfür wurde ein
“sparse coding” Modell definiert und implementiert, dass die An- bzw. Abwesenheit eines
Lexikon-Eintrags modelliert, der durch eine endliche Anzahl an Skalierungsoperationen
transformiert wurde. Das diskrete “sparse coding”-Modell wurde mit einer expliziten
Repräsentation von zeitlichen Verschiebungen so erweitert, dass zeitinvariante Repräsen-
tationen gelernt werden können ohne dabei die zeitliche Übereinstimmung zu verlieren.
In einem Versuch ein allgemeineres Modell für Datentransformationen zu erstellen, wurde
ein neuronales Netzwerk entwickelt, dass Transformationen zwischen Paaren von Daten-
punkten kodiert. Weiterhin wurde ein nichtlineares System benutzt, dass die Dynamik
durch eine bilineare Transformation beschreibt, die den vorigen Zustand und eine Vari-
able, die die Transformation kodiert, kombiniert, um so den aktuellen Zustand zu gener-
ieren.

Um das Verhalten der oben genannten Modelle zu untersuchen, wurden sie auf ver-
schiedenen Aufgaben getestet. Fast immer wurden die Modelle darauf getestet, aus
künstlich erzeugten Daten bestimmte Parameter wiederherzustellen. Außerdem konnten
interessante Eigenschaften beim Kodieren von natürlichen Bildern, extra-zellulären neu-
ronalen Messungen und Audiodaten gewonnen werden.

ii

Contents

1. Introduction 1
1.1. Probabilistic Generative Models . 2

1.1.1. Expectation Maximization . 3
1.1.2. Sparse Coding . 5

1.2. Neural Networks . 6
1.3. Dynamical Systems . 9

1.3.1. Linear Dynamical Systems . 9
1.3.2. Non-Linear Dynamical Systems 10

1.4. Overview . 10

2. Discrete Sparse Coding 13
2.1. Introduction . 13
2.2. Mathematical Description . 15
2.3. Numerical Experiments . 19

2.3.1. Artificial Data . 19
2.3.2. Image Patches . 21
2.3.3. Analysis of Neuronal Recordings 26
2.3.4. Audio Data . 33

2.4. Discussion . 37

3. Time-Invariant Discrete Sparse Coding 41
3.1. Introduction . 41
3.2. Mathematical Description . 41
3.3. Numerical Experiments . 46

3.3.1. Spike Sorting . 46
3.3.2. Audio Data of Human Speech 53

3.4. Discussion . 55

4. Learning Transformations with Neural Networks 59
4.1. Introduction . 59
4.2. Background on Transformation Learning 60
4.3. Deep Gated Autoencoder . 61
4.4. Experiments . 63

4.4.1. Image analogies . 63

iii

Contents

4.5. Discussion . 67

5. Bilinear Dynamical Systems 69
5.1. Introduction . 69
5.2. Mathematical Description . 70
5.3. Numerical Experiments . 74

5.3.1. Inference on artificially generated sequences 74
5.4. Discussion . 78

6. General Discussion and Conclusions 79

A. Discrete Sparse Coding 83
A.1. M-step . 83

B. Time-invariant Discrete Sparse Coding 87
B.1. M-step . 87

C. BiLinear Dynamical Systems 89
C.1. Properties of Mutlivariate Gaussian Distributions 89
C.2. Filtering - Forward Pass . 90
C.3. Smoothing - Backward Pass . 91
C.4. Parameter Estimation . 93

List of Figures 97

Bibliography 99

iv

1. Introduction
The brain has the capacity to identify regularities in natural stimuli in a highly efficient
manner. During our lifetime we are exposed to an environment that is constantly changing
and yet our brain is able to learn how to break it down into components that remain
unaltered by those changes. In order to create artificial systems that integrate with the real
world as efficiently as humans we need to learn how to extract information from natural
data in a similar manner. Defining algorithms that assume as input a large amount of data
and identify patterns and provide a succinct, flexible and powerful descriptions of the data
is a subject of central interest in the field of Machine Learning.

Machine Learning is the field of study that deals with the development of algorithms
that identify patterns in data. The task in itself is very broad and addresses several objec-
tives from developing algorithms for classification and density estimation to improving
the scaling of those algorithms for large numbers of variables, observed or unobserved.
With such a broad set of research directions it often appears wise to draw inspiration from
the natural environment in order to identify efficient learning techniques and the brain is
the most apparent natural choice. In this work we define a variety of learning algorithms
that we aspire to be applicable in wide range of problems and yet capable to provide a
high quality representations of the data. For that reason, we often argue on the similarities
between the behavior of our algorithms and the brain.

A prominent feature of the nervous system is the ability to separate sensory data in
static and dynamic components. When we interact with nature we are often presented
with stimuli that are subject to certain variations and yet we are able to perceive such
stimuli and quite often the way it changes as well. For instance, when we see a moving
car we are able to identify it as a car that follows a certain trajectory. That suggests that
somewhere in our brain there is a representation of a car that is invariant to the change in
the car’s location. If we now see a bicycle moving in the same way as the car we can also
identify the bicycle regardless of its transitions, more importantly though, we can identify
that the car and the bicycle where moving in the same way, in other words, their state
was subject to the same changes. This observation extends to other sensory modalities,
for instance, when we hear someone talking we can identify what they say but we can
also identify the voice of the speaker, whether they are moving away from us and so on.
Creating invariant representations of “things” in our environment is of central interest in
machine learning. (see e.g. Földiák, 1991; Tenenbaum and Freeman, 2000; Lewicki and
Sejnowski, 2000; Memisevic and Hinton, 2007; LeCun et al., 2015, and many others).

With this in mind we define in this thesis a series of machine learning algorithms that

1

1. Introduction

extract regularities from natural data. The models we deal with here use the learned
structures to define different representations of the data that clearly separate content from
change. We primarily use probabilistic generative models with latent variables but also
artificial neural networks to learn these representations. In the following sections we will
introduce elementary mathematical principles of the models we shall discuss later in more
detail.

1.1. Probabilistic Generative Models

A highly expressive and versatile way to describe structure in a dataset are probabilistic
generative models. Probabilistic generative models assume that there is some uncertainty
regarding in the way the model describes the data and proceeds to model it by accounting
for the probability of the data to be present. More specifically, an observation y is modeled
by its probability of appearance:

p (y) (1.1)

By sampling from the distribution of the data equation 1.1 we can generate data similar to
the ones we observe, as described by our model, with slight perturbations that correspond
to the uncertainty of the representation. When defining a distribution it is necessary to use
some parameters that describe its structure. We usually denote the full set of parameters
by the variable \Theta . The parameters \Theta are not the argument of our probabilistic model but
they are necessary to define it and therefore we often denote the model as:

p (y| \Theta) = p (y) (1.2)

Identifying the correct parameters \Theta \ast for the model given a set of observations is the
objective of machine learning in the probabilistic setting. For that reason, it is useful to
define a function of the parameters that takes the same values as the distribution at a point.
This function is the likelihood1 and we denote it as:

L (\Theta) = p (y| \Theta) (1.3)

In general, when we seek the probabilistic model that is most likely to have generated the
data we need to identify the model that maximizes the data likelihood, equation 1.3. This
approach to learning is addressed as Maximum Likelihood Estimation (MLE) and is one
of the most prominent methods for parameter estimation. MLE methods is what we mean
when we discuss learning in this work.

The way we perceive the world implies structure beyond the one we interact with.
Generative models describe this structure as unobserved/latent variables and assume that

1 For N samples of y we assume that they are iid distributed and the likelihood is L (\Theta) = p (\bfy | \Theta) =\prod N
n=1 p

\bigl(
y(n)

\bigr)
. We show the process for a N = 1 since it trivially extends to an arbitrary N .

2

1.1. Probabilistic Generative Models

the observed variables depend on them. In order to include these latent variables, x to our
model we use the rule of total probability to extend equation 1.2 as:

p (y| \Theta) =
\sum
x

p (y, x| \Theta) (1.4)

Typically the term generative models refer to latent variable generative models and they
are defined by the joint probability of observed and latent variables, p (y, x| \Theta), restruc-
tured as:

p (y, x| \Theta) = p (y| x,\Theta) p (x| \Theta) (1.5)

where the probability p (x| \Theta) is known as the prior of the latent variables and p (y| x,\Theta) is
commonly referred to as the noise model of the observed variables. When trying to infer
something about the environment from our observations we often resort to the posterior
of the latent variables given an observation, p (x| y,\Theta) that is given to use by the Bayes’
theorem:

p (x| y,\Theta) =
p (y| x,\Theta) p (x| \Theta)

p (y| \Theta)
=

p (y| x,\Theta) p (x| \Theta)\sum
x p (y| x\Theta) p (x| \Theta)

(1.6)

The Bayes’ theorem relates the prior of the latent variables and the noise model of the
observations with the posterior of the latent variables given the data. This means that,
within the framework of probabilistic generative models, the only thing we need to define
in order to model the structure of the natural world is the prior, and the noise model.
One should note however that for a lot of generative models identifying the posterior is
task of considerable difficulty. For instance, if x is a high dimensional discrete random
variable the sum in the denominator of equation 1.6 can easily become computationally
intractable. Also, if x takes values in a continuous domain the integrating over all the
possible values requires solving an integral for the denominator of equation 1.6 that is not
always analytically tractable.

1.1.1. Expectation Maximization

Now that we have defined the significant probabilistic quantities of generative models we
need to define a method for learning the optimal parameters, \Theta \ast , of the model. As stated
previously, the optimal parameters \Theta \ast are the ones that maximize the likelihood function.
However, for both numerical and analytical reasons it is quite common to try to optimize
the logarithm of the likelihood instead

\scrL (\Theta) = \mathrm{l}\mathrm{o}\mathrm{g}L (\Theta) = p (y| \Theta) (1.7)

where L (\Theta) is the likelihood function defined in equation 1.3. Since the logarithm is
monotonically increasing function the optima of the log-likelihood are found for the same
parameters, \Theta \ast , as the likelihood. There are many ways we can use to optimize the log-

3

1. Introduction

likelihood e.g. gradient based methods, sampling and others. However, we will use an
algorithm commonly known Expectation Maximization (EM) (Dempster et al., 1977) due
to its nice theoretical and empirical convergence properties. Taking the logarithm of the
likelihood of a latent variable model introduces a sum inside inside the logarithm which
is difficult to handle. The EM framework works around that issue as follows:

\scrL (\Theta) = \mathrm{l}\mathrm{o}\mathrm{g}
\sum
x

p (y, x| \Theta)

= \mathrm{l}\mathrm{o}\mathrm{g}
\sum
x

q (x) p (y, x| \Theta)

q (x)

\geq
\sum
x

q (x) \mathrm{l}\mathrm{o}\mathrm{g}
p (y, x| \Theta)

q (x)

=
\sum
x

q (x) \mathrm{l}\mathrm{o}\mathrm{g} p (y| x,\Theta) p (x| \Theta) -
\sum
x

q (x) \mathrm{l}\mathrm{o}\mathrm{g} q (x)

= \scrQ (\Theta , q) +H [q] = \scrF (q,\Theta) (1.8)

where the inequality is Jensen’s inequality and it introduces a distribution q (x) over the
latent variables. Equation 1.8 is called the Free Energy and it is a lower bound to log-
likelihood that is much easier to optimize. H [q] is the Shanon entropy of the distribution
q (x), and \scrQ (\Theta , q) is the only part of the free energy that depends to the parameters and
therefore serves as the objective function of the optimization problem. The EM is a two
step iterative algorithm that optimizes the free energy. In the E-step we increase the free
energy by making it equal to the log-likelihood, i.e. satisfying the condition:

\scrF (q,\Theta) =
\sum
x

q (x) \mathrm{l}\mathrm{o}\mathrm{g} p (y| x,\Theta) p (x| \Theta) -
\sum
x

q (x) \mathrm{l}\mathrm{o}\mathrm{g} q (x)

=
\sum
x

q (x) \mathrm{l}\mathrm{o}\mathrm{g} p (x| y,\Theta) p (y| \Theta) -
\sum
x

q (x) \mathrm{l}\mathrm{o}\mathrm{g} q (x)

=
\sum
x

q (x) \mathrm{l}\mathrm{o}\mathrm{g} p (y| \Theta) -
\sum
x

q (x) \mathrm{l}\mathrm{o}\mathrm{g}
q (x)

p (x| y,\Theta)

= \mathrm{l}\mathrm{o}\mathrm{g} p (y| \Theta) - KL [q (x) \| p (x| y,\Theta)]

= \scrL (\Theta) - KL [q (x) \| p (x| y,\Theta)] (1.9)

where KL [q (x) \| p (x| y,\Theta)] is the Kullback–Leibler (KL) divergence between p (x| y,\Theta)
and q (x). The KL divergence between two distributions is a equal to zero only when
p (x| y,\Theta) and q (x) are equal. Therefore, identifying the posterior of the latent variable
given the data defines the E-step of our algorithm.

The M-step of the EM algorithm is optimizing the free energy with respect to the pa-
rameters \Theta . Typically, parameters \Theta are real valued numbers and since the logarithm is

4

1.1. Probabilistic Generative Models

an monotonically increasing function identifying the values of the parameters that set the
gradient of the free energy to zero is sufficient to maximize it:

\nabla \Theta \scrF (q,\Theta) = 0 (1.10)

However, updating the parameters \Theta changes the posterior of the latent variables given
the data and therefore the updated free energy is no longer equal to the log-likelihood.
It is therefore necessary to iterate between the E-step and M-step of the algorithm until
convergence to identify the optima of the log-likelihood function.

Potential issues during training. There are many potential issues that can arise
when applying the EM algorithm to generative models. In the E-step, identifying the
posterior is often non trivial. In the case of continuous latent variables, the integral in
the denominator of the posterior is sometimes not analytically tractable and one has to
resort to numerical methods to find an approximate estimate of it. In the case of discrete
latent variables, it is usually much easier to get an analytical solution for the posterior,
however, with an increasing dimensionality for the latent variables the posterior becomes
computationally intractable. In that case, we need to resort to sampling methods for an
approximate estimate for the posterior or apply factored variational approximations, i.e.
approximate the posterior with a distribution over the latents that treats them as indepen-
dent random variables.

In this work we will present a novel approximation scheme for discrete latent variables,
that is a straight forward extension of the truncated approximation in (Lücke and Eggert,
2010). Truncated approximations introduce a further step before the E-step that identifies
a subset of the latent variables posterior that contains the majority of the posterior mass
and estimates the posterior only over that set.

1.1.2. Sparse Coding

As an example generative model we introduce the Sparse Coding model. Sparse Coding
(SC) (Olshausen and Field, 1997) was proposed as neural coding strategy of simple cells
in the primary visual cortex of the mammalian brain, and it has since become a prominent
information encoding paradigm on a diverse set of applications.

The rationale behind the definition of sparse coding suggests that in order for each latent
variables to describe as much of the observations as possible it has to take values very
close to zero most of the time and values far away from zero when it shares some common
structure with a datapoint. The observations then are defined as a linear combination of
those latent variables.

For observations \vec{}y defined in \BbbR D, and latents \vec{}s that take values in \BbbR H the probabilistic

5

1. Introduction

generative model is defined by the following two probability densities:

Prior: p (\vec{}s| \Theta) =
\prod
h

C (sh,\Theta) (1.11)

Noise Model: p (y| \vec{}s,\Theta) = \scrN
\bigl(
W\vec{}s;\sigma 21

\bigr)
(1.12)

where C (\vec{}s| \Theta) is heavy tailed probability density, typically a Laplace or a Cauchy dis-
tribution. Notice, that the prior assumes that each latent variable is independent and
identically distributed from the other and the noise model is a Gaussian density with a
mean equal to the linear combination of the latent variables under a “dictionary” matrix
W . The parameters we need to optimize are the dictionary elements, i.e. \Theta = \{ W\} .
Unfortunately, the posterior of the Sparse Coding model is analytically intractable and
one has to resort to either sampling methods or identifying sophisticated point estimates
in the latent space for inference and learning.

The Sparse Coding model has been central to the development of non-Gaussian encod-
ing schemes in Machine Learning and it is the standard model for the behavior of simple
cell receptive fields in the primary visual cortex. However, following the rationale of
Sparse Coding one could further improve on the encoding by assuming discrete random
variables for the latent space. Having a discrete latent space with at least one zero and
one non-zero value would send a more transparent signal for the contribution or not of a
variable in the observed data. In chapters 2, and 3 we will introduce algorithms that deal
with such prior distributions.

1.2. Neural Networks

Artificial neural networks are a class of models that is popular for the analysis of natural
data. Neural Networks are a class of models originally designed to model connectivity
patterns in the brain that have developed to imitate considerable functional properties as
well.

Originally proposed by Rosenblatt (1958) the perceptron is potentially the simplest
form of neural network:

xj = f

\Biggl(\sum
i

wjiyi + bj

\Biggr)
(1.13)

where f is a function defined as f (x) = 1, if x > 0, and f (x) = 0 otherwise. The
perceptron, equation 1.13, models the activity of a neuron, xj , as the weighted sum of the
activity of the neurons it is connected to, yi, if the corresponding weight wji is small/high
then the connection between the two neurons is weak/strong. More recently, the word
perceptron has been used to describe models with other nonlinear functions f .

One can use the output of a perceptron as input to another perceptron and do so repeat-

6

1.2. Neural Networks

edly to create a multilayer perceptron.

xk = g

\Biggl(\sum
j

vkjf

\Biggl(\sum
i

wjiyi + bj

\Biggr) \Biggr)
(1.14)

Equation 1.14 presents the activation of a two-layer perceptron. Multilayer percep-
trons are part of a branch of a machine learning branch known as Deep Learning. Deep
Learning models seek alternative representations of the observations by giving them as
arguments to a cascade of linear and non-linear functions (for a recent review see LeCun
et al., 2015).

It is not uncommon to relate neural networks to probabilistic models by assigning prob-
ability density function as a further nonlinearity of the last layer. For the Gaussian case,
for instance, a representation such as the one in equation 1.14 would become:

p(\vec{}x| \vec{}y) = \scrN (g (V f(W\vec{}y)) ,\Sigma) (1.15)

where the mean g (V f (W\vec{}y)) is identical to the left hand side of 1.14, only now switched
to a vectorial notation for the operations. Defining a likelihood for our model in terms of
equation 1.15, deviates from our standard modelling methodology of generative models
in the sense that our likelihood is a conditional probability of \vec{}x given \vec{}y, p (\vec{}x, \vec{}y), and we
do not define their joint distributions p (\vec{}x, \vec{}y). Models that define the conditional probabil-
ity directly are known as discriminative models. Since discriminative models model the
relationship between \vec{}x and \vec{}y they are typically used for supervised learning, i.e. learning
in a setting where you have observations for both \vec{}x and \vec{}y.

It is worth to note at this point that taking the logarithm of equation 1.15 and assuming
and identity covariance matrix, \Sigma , reduces the learning problem to minimizing the squared
error between the left and right hand side of equation 1.14. By far the most popular way
to do that is via stochastic gradient descent in the parameter space of the model, \Theta =
\{ W,V \} . Since the mapping between \vec{}y and \vec{}x is a composition of linear and non-linear
functions we can use the chain rule to identify the gradient, i.e. (g \circ f)\prime = (f \prime \circ g) \cdot g\prime for
instance for the parameters V we have:

\nabla V\scrL (\Theta) = \nabla V \| \vec{}x - g (V f (W\vec{}y))\| 22
= 2 (\vec{}x - g (V f (W\vec{}y)))\odot g\prime (V f (W\vec{}y)) f (W\vec{}y)T (1.16)

where f , g, and g\prime are elementwise functions and \odot denotes an elementwise multiplica-
tion. Similarly, for the parameter W we have:

\nabla W\scrL (\Theta) = \nabla W \| \vec{}x - g (V f (W\vec{}y))\| 22
= 2 (\vec{}x - g (V f (W\vec{}y)))\odot g\prime (V f (W\vec{}y))V T \odot f \prime (W\vec{}y) \vec{}yT (1.17)

7

1. Introduction

notice the reuse of the quantities in equations 1.16 and 1.17. The gradients described
above by passing the error of the representation back through the transposed weights and
the differentiated nonlinearities. This method of computing the gradients for neural net-
works is commonly referred to as back-propagation of errors, or simply back-propagation.
Subtracting the gradients in equations 1.16 and 1.17 gives the update rule for the param-
eters of a neural network trained using gradient descent:

\Theta new = \Theta old - \epsilon \nabla \Theta \scrL (\Theta) (1.18)

where \epsilon is the learning rate of the network. In stochastic gradient descent the sum over
datapoints in \scrL (\Theta) is limited to randomly selected subset of the datapoints. To make the
learning more efficient one often includes momentum terms (see for instance Nesterov
et al., 2007) or methods using second order derivatives (Battiti, 1992).

A particular type of neural network that we are going to deal with in this paper is
the autoencoder. An autoencoder is an unsupervised neural network that tries to find a
mapping of the data to itself. The simplest type of autoencoder is the linear autoencoder:

\scrL (W,V) \propto - \| \vec{}x - VW\vec{}x\| (1.19)

where W \in \BbbR H\times D is the encoding matrix, and V \in \BbbR H\times D is the decoding matrix.
When W = V T , and H < D the encoding, \vec{}h = W\vec{}x, of the linear autoencoder at the
optimum has the same properties as the representation of the data offered by Principle
Component Analysis (PCA) (Baldi and Hornik, 1989). Training the model described in
1.19 using stochastic gradient descent is more computationally efficient than most PCA
algorithms and that sketches the appeal autoencoders have to machine learning research.
By mapping the data onto itself using a neural network one can easily extract interesting
representations of the data.

Most autoencoder research is focus on nonlinear and deep autoencoder models, i.e.
representations like\vec{}h are passed through elementwise nonlinearities and possibly through
further encoding processes (Hinton and Salakhutdinov, 2006; Vincent et al., 2010). In
chapter 4 that takes in a pair of datapoints and tries to relate them using their multiplicative
interactions as a nonlinearity (see for instance Memisevic and Hinton, 2007).

The field of artificial neural networks has seen remarkable growth in recent years. The
reason being that neural networks usually exhibit their advantages compared to other
techniques when we deal with a large amount of data. The creation of large databases
for machine learning tasks has exposed their potential in multiple tasks. Another reason
for their recent growth is the fact that training neural networks with stochastic gradient
descent is a task easily parallelizable through the use of graphical processing units (GPUs)
and the recent advances in GPU architectures have made training neural networks orders
of magnitude faster.

8

1.3. Dynamical Systems

1.3. Dynamical Systems

So far we have discussed models that deal with datasets with independent observations,
however, quite often we have to deal with observations that are not independent. When we
study systems that exhibit dependencies across time we are discussing dynamical systems.
Dynamical systems can be separated in two large categories discrete-time dynamical sys-
tems that treat time as a discrete variable and continuous-time dynamical systems that
treat time as continuous variable. In this work we only refer to discrete-time dynamical
systems and often we just refer to them as dynamical systems. Typically, when modeling
dynamical systems we seek a different representation of the observations, a representa-
tion that expresses the state of the system at a point in time, and then we seek to identify
structures that describe temporal dependencies in the system state. Identifying the system
state at a point, is often directly analogous to seeking a posterior in a generative model.
Temporal dependencies can be a bit more complex because they can exist across multiple
time points. A commonly used methodology to simplify the modeling of temporal depen-
dencies is to assume that the system state at a point in time depends only on the state at
the immediately earlier point in time and not on any state before that. This is known as
the Markov property and it is crucial for the inference process on dynamical systems that
we use here.

1.3.1. Linear Dynamical Systems

Linear dynamical systems (LDS) assume that the relationship across consecutive states
are linear transformations subject to uncertainty. The stochastic formulation of a linear
dynamical system is:

yt = Wxt + u (1.20)
xt = Axt - 1 + v (1.21)

where the variables xt describe the system state and the variables yt the observations at
time t. The matrix A defines the dynamics of the model state and the matrix W is the dic-
tionary or output matrix of the model. Variables u, and v represent the noise or uncertainty
of the model, typically following a Gaussian distribution. In order to identify the model
parameters in terms of the likelihood maximization framework discussed earlier we need
to introduce the likelihood of the model in terms of the observations \bfy = y1, . . . , yT as:

p (\bfy) =
T\prod
t=1

p (yt| xt)
T\prod
t=2

p (xt| xt - 1) p (x1) \leftrightarrow

=
T\prod
t=1

\scrN (yt| Wxt,\Sigma)
T\prod
t=2

\scrN (xt| Axt - 1,\Gamma)\scrN
\Bigl(
x1| \^x1, \^V1

\Bigr)
(1.22)

9

1. Introduction

where p (x1) is the prior distribution of the latent variables of the model. Equation 1.22
defines the likelihood of a linear dynamical system and it can be maximized with a variant
of the EM algorithm (originally Rauch et al. (1965) but also see Ghahramani and Hinton
(1996); Shumway and Stoffer (2010). As in the case of the EM described earlier, the
crucial quantity to estimate is the posterior distribution of the latent variables given the
observations. p (\bfx | \bfy). Which becomes much harder to compute directly as the number of
time-points increases. Due to the Markov property of the model the quantity that becomes
relevant for the parameter updates is only the posterior at time t, p (xt| \bfy ,\Theta), and it can be
computed efficiently through a two-pass iterative process.

1.3.2. Non-Linear Dynamical Systems

In some cases the data we are trying to model are going through a more complex pro-
cess than what can be described with linear dynamical system. In that case, it might be
necessary to describe the data with a nonlinear dynamical system:

yt = Wxt + u (1.23)
xt = f (xt - 1) + v (1.24)

where f is a non-linear function. A nonlinear dynamical system that we will discuss in
chapter 5 expresses the dynamics as a bilinear map between the earlier state and another
variable:

yt = Wxt + u (1.25)
xt = f (xt - 1, kt) + v (1.26)

where kt is a variable that defines a linear transformation at time t. More explicitly, a bilin-
ear map f is a function of two variables that is linear for both of them, i.e. f (x, ay + b) =
af (x, y) + b, and f (ax+ b, y) = af (x, y) + b. Therefore, maintaining the variable kt
fixed at equation 1.26 reduces it to a linear dynamical system, i.e. the variable kt identifies
the linear transformation that takes place between state t - 1, and t.

1.4. Overview

Based on the afore mentioned modeling methodologies we propose a set of algorithms
that attempt to extract form invariant to a set of changes that are also explicitly modeled.

More specifically in chapter 2, we implement a Sparse Coding (Olshausen and Field,
1996) model with discrete latent variables which are invariant to a set of discrete scaling
coefficients. We train the model using a variant of the EM algorithm that has worked well
with binary latents in earlier work. An appealing property of this learning setup is that

10

1.4. Overview

we are able to learn a sparse dictionary as well as the prior for the activation probabilities
and the variance of the noise model. We examine the learning behavior of the algorithm
by applying it to artificially generated data with known parameters and discuss its ability
to recover the data from random initialization. By applying the learning to natural images
we learn structure that is found in typical sparse dictionaries only now we go beyond that
by learning prior structure as well. We apply the algorithm on data captured from extra-
cellular recordings of spiking neurons to learn interesting structure that challenges typical
spike detection approaches. Using audio waveforms of human speech we learn sparse
dictionaries that provide insights to the scaling behavior of the speech components.

We extend the discrete sparse coding algorithm to include a latent variable responsible
for temporal alignment of the dictionary elements with the data in chapter 3. Using this
additional variable we gain representations for the data that are time invariant without
discarding temporal alignment. We apply the invariant discrete sparse coding algorithm to
extra-cellular recordings of spiking neurons to find time-invariant dictionaries for spikes
with explicit localization in time. Our results indicate that identifying the spiking profile
and the spike timing of a neuron offers a simple and elegant solution to the spike sorting
problems. On audio data, we use the algorithm to learn time invariant dictionaries and
study the extracted parameters and compare to the parameters of discrete sparse coding
model in chapter 2 to find surprisingly similar results.

To study change in the data in a more general setting we propose an autoencoder that
learns how to identify relationships between pairs of datapoints in chapter 4. We test
its potential to learn image relationships by applying it on pairs of images of items that
change by a 3-dimensional rotation. We proceed to use the trained model to generate
analogies of the transformations in the images.

In chapter 5, we propose a bilinear dynamical system that models dynamics in terms
of state and transformation variables. The rationale behind it is that while the neural net-
work in the earlier section would work between pairs of images the bilinear dynamical
system could potentially scale to sequences of data of arbitrary size. We test this algo-
rithm on artificial data to study its ability to identify transformations from a sequence of
observation.

Finally, we discuss the theoretical and experimental results of our work in terms of
lessons learned from applying our models to natural and artificial data. We talk about the
issues regarding the model definitions and training, the results that we found particularly
interesting and potential extensions of the presented algorithms. The end of this document
also includes an appendix with some derivations that might facilitate the reader while
going through parts of this work.

11

2. Discrete Sparse Coding

2.1. Introduction

In this chapter we discuss a variant of the Sparse Coding algorithm with discrete latent
variables. The work in this chapter is published in Exarchakis and Lücke (2017). The
mathematical description section and any comments on relevant research represents joint
work between Georgios Exarchakis and Jörg Lücke.

The arguments in favor of sparsity stem from multiple research directions: classical
computer vision results (Field, 1994), observed sparsity in brain recordings (Hubel and
Wiesel, 1977), and the idea that the generative process of natural data consists of sparsely
present structural elements (Olshausen and Field, 1997; Field, 1994). In this work we
focus on the later idea, i.e., that it is common to perceive natural datasets as a large set of
distinct structural elements that appear infrequently. Pursuing distinct selectivity of fea-
tures in the data, as opposed to obfuscated overlapping responsibilities in earlier Gaussian
approaches (Hancock et al., 1992), SC has commonly been associated with heavy tailed
prior distributions. However, it is often argued that the SC principle encourages discrete
distributions or distributions with a discrete component (Rehn and Sommer, 2007; Titsias
and Lázaro-Gredilla, 2011; Goodfellow et al., 2012; Sheikh et al., 2014) since continuous
distributions do not send a clear “yes” or “no” signal for the features that constitute a
datapoint. Similarly, it is frequently pointed out in the closely related field of compressive
sensing (see, e.g., Donoho, 2006; Eldar and Kutyniok, 2012; Sparrer and Fischer, 2014)
that “hard” sparsity (in the form of an l0 sparsity penalty) is preferable to softer sparsity
as it would reflected by continuous prior distributions.

All non-Gaussian encodings of hidden variables typically pose difficulties in Machine
Learning. While efficient approaches have been developed for approaches such as inde-
pendent component analysis (Bell and Sejnowski, 1997; Bingham and Hyvärinen, 2000)
or non-negative matrix factorization (Lee and Seung, 1999), we usually face severe ana-
lytical intractabilities if data noise is taken into account. For typical sparse coding models,
we are therefore forced to apply approximation schemes (e.g. Olshausen and Field, 1997;
Lee et al., 2007; Berkes et al., 2008; Mairal et al., 2010) to obtain efficient learning algo-
rithms for parameter optimization. Several techniques have been used to overcome that
problem (Aharon et al., 2006) based on either sophisticated point estimates of the poste-
rior mode or sampling based methods (e.g. Berkes et al., 2008). Each of these methods
offers its own set of advantages and disadvantages. Methods based on point estimates tend

13

2. Discrete Sparse Coding

to be computationally efficient by avoiding the intricacies of dealing with uncertainty in
the posterior, for instance. Sampling based methods, on the other hand, offer a more ad-
vanced description of the posterior but usually at a cost of either computational complex-
ity or convergence speed. In the case of discrete hidden variables, it is straight-forward
to derive exact analytical solutions for the optimization of model parameters within the
expectation maximization (EM) approach (e.g. Haft et al., 2004; Henniges et al., 2010,
for binary latents) but such exact solutions scale very poorly with the number of latent di-
mensions. In order to overcome poor scalability during learning and inference for sparse
coding with binary latents, factored or truncated variational approximations to a-posterior
distributions have been used (Haft et al., 2004; Henniges et al., 2010; Bingham et al.,
2009). Like in the continuous case, also sampling offers itself as a well-established and
efficient approach (see, e.g., Zhou et al. (2009) for a ‘hard’ sparsity model or Griffiths
and Ghahramani (2011) for a non-parametric approach with binary latents). In practice,
however, deterministic factored or truncated approaches are frequently preferred (Haft
et al., 2004; Zhou et al., 2009; Titsias and Lázaro-Gredilla, 2011; Sheikh et al., 2014)
presumably due to their computational benefits in high dimensional hidden spaces. For
discrete latents, truncated approximations to intractable posteriors (Lücke and Eggert,
2010; Puertas et al., 2010; Exarchakis et al., 2012; Henniges et al., 2014) have repre-
sented an alternative to sampling and factored variational methods. Like sampling (but
unlike factored variational methods), truncated approximations do not make the assump-
tion of a-posteriori independence. Like factored approaches (but unlike sampling), trun-
cated approximations have been shown to be very efficient also in spaces with very large
hidden spaces (Shelton et al., 2011; Sheikh et al., 2014). Truncated approaches can be
expected to represent very accurate approximations if posterior masses are concentrated
on relatively few states, which makes them well suited for our purposes.

The main focus of this study is to derive a general learning algorithm for sparse coding
with discrete latents. That is, for any sparse prior distribution over discrete values. Such
a new prior allows us to study l0 prior distributions with no constraints in the shape of the
active coefficients, i.e., our approach does not assume any functional shape for the prior
probabilities of our discrete states in contrast to the requirement of choosing a specific
functional form of priors for SC with continuous latents (e.g., Cauchy and Laplace Ol-
shausen and Field (1997), and many more, Student-t Berkes et al. (2008) or other heavy-
tail distributions). The computational complexity of training a general discrete sparse
coding model, which goes much beyond the complexity of earlier approaches, will be a
main challenge of this study. Furthermore, we address the problem of how parameters of
the prior for each state can be learned, as learning of such parameters from data essentially
allows for learning of the shape of the prior distribution.

To demonstrate the newly derived approach and its capabilities, it is applied, e.g, to ac-
quire information about the prior structure only conjectured in earlier work. Initially, we
first demonstrate the effectiveness of the training scheme on artificial data to better expose

14

2.2. Mathematical Description

the intricacies of the learning procedure. We continue by testing the model with different
configurations on natural images and aim at inferring prior shapes with a minimal scien-
tific bias, in the course of this work we are also verifying the validity of the model by
replicating and confirming preliminary earlier results (Henniges et al., 2010; Exarchakis
et al., 2012) as special cases of our approach. Furthermore, we perform an analysis of
data captured through extra-cellular recordings of spiking neurons using a configuration
for the latent states that accounts for background activity as well as potential decays that
occur in spike trains. Common methods of analysis of extra-cellular recordings use intri-
cate pipelines for spike detection and identification and often rely on Gaussian priors to
characterize a spike even though the spike is perceived as a discrete quantity. Here, we
propose a model that takes into account the discrete nature of spikes as well as their vary-
ing amplitudes, which are due to spike trains, as well as potential overlaps with spikes
of nearby neurons. Finally, we apply the model on a feature extraction task from hu-
man speech using the raw waveform. Human speech is widely perceived to be discrete
in nature regardless of what its discrete components are (words, syllables, phonemes and
so on), and that implies that a discrete encoding of speech in an unsupervised setting is
particularly interesting.

2.2. Mathematical Description

Consider a set, Y , of N independent datapoints \vec{}y(n), with n = 1, . . . , N , where \vec{}y(n) \in
\BbbR D. For these data the studied learning algorithm seeks parameters \Theta \ast = \{ W \ast , \sigma \ast , \vec{}\pi \ast \}
that maximize the data log-likelihood:

L (Y | \Theta) = \mathrm{l}\mathrm{o}\mathrm{g}
N\prod

n=1

p
\bigl(
\vec{}y(n)| \Theta

\bigr)
=

N\sum
n=1

\mathrm{l}\mathrm{o}\mathrm{g} p
\bigl(
\vec{}y(n)| \Theta

\bigr)
Sparse coding models are latent variable models and therefore the likelihood is defined as
a function of unobserved random variables as follows

L (\vec{}\bfity | \Theta) =
N\sum

n=1

\mathrm{l}\mathrm{o}\mathrm{g} p
\bigl(
\vec{}y(n)| \Theta

\bigr)
=

N\sum
n=1

\mathrm{l}\mathrm{o}\mathrm{g}
\sum
\vec{}s

p
\bigl(
\vec{}y(n)| \vec{}s,\Theta

\bigr)
p (\vec{}s| \Theta) (2.1)

where the latent variables \vec{}s are taken to have discrete values, and where the sum
\sum

\vec{}s goes
over all possible vectors \vec{}s, i.e., over all possible combinations of discrete states. Let \vec{}s be
of length H , i.e. \vec{}s = (s1, . . . , sH)

T , where each element sh can take on one of K discrete
values \phi k \in \BbbR , i.e. \vec{}sh \in \Phi = \{ \phi 1, . . . , \phi K\} . For such latents, we can define the following

15

2. Discrete Sparse Coding

prior:

p(\vec{}s | \Theta) =
H\prod

h=1

K\prod
k=1

\pi
\delta (\phi k=sh)
k , with

K\sum
k=1

\pi k = 1, (2.2)

where \delta (\phi k = sh) is an indicator function which is one if and only if \phi k = sh and zero
otherwise. As for standard sparse coding, Equation 2.2 assumes independent and identical
distributions for the latents sh. The prior will be used to model sparse activity by demand-
ing one of the values in \Phi = \{ \phi 1, . . . , \phi K\} to be zero and the corresponding probability
to be relatively high. We will refer to the set of possible values \Phi as a configuration.
An example is to choose configuration \Phi = \{ 0, 1\} , which reduces (using \pi = \pi 2 and
(1 - \pi) = \pi 1) the prior (2.2) to the Bernoulli prior p(\vec{}s | \Theta) =

\prod H
h=1 \pi

sh (1 - \pi)1 - sh (as
used for binary sparse coding, Haft et al., 2004; Henniges et al., 2010; Bornschein et al.,
2012). The notation used in (2.2) is similar to a categorical distribution but applies for
latents with any values \phi k with any probabilities \pi k. Its form will be convenient for later
derivations.

Having defined the prior (2.2), we assume the observed variables \vec{}y = (y1, . . . , yD)
T to

be generated as in standard sparse coding, i.e., we assume Gaussian noise with the mean
set by a linear superposition of the latents:

p (\vec{}y | \vec{}s,\Theta) = \scrN
\bigl(
\vec{}y;W\vec{}s, \sigma 21

\bigr)
(2.3)

with an isotropic covariance, \sigma 21 , and mean W\vec{}s. We call the data model defined by (2.2)
and (2.3) the discrete sparse coding (DSC) data model.

Given a set of datapoints \vec{}y(1), . . . , \vec{}y(N) and the DSC data model, we now seek param-
eters \Theta = (\vec{}\pi ,W, \sigma) that maximize the likelihood (2.1). We derive parameter update
equations using Expectation Maximization in its free-energy formulation (Neal and Hin-
ton, 1998). In our case, exact EM update equations can be derived in closed-form but the
E-step scales with the number of hidden states \scrO (KH), making the algorithm computa-
tionally intractable for large H .

In order to derive computationally tractable approximations for parameter optimiza-
tion, we approximate the intractable a-posteriori probabilities p(\vec{}s | \vec{}y,\Theta) by a truncated
distribution:

p(\vec{}s | \vec{}y(n),\Theta) \approx q(n)(\vec{}s; \Theta) =
p(\vec{}s | \vec{}y(n),\Theta)\sum

\vec{}s\prime \in \scrK (n) p(\vec{}s\prime | \vec{}y(n),\Theta)
\delta (\vec{}s \in \scrK (n)), (2.4)

where \scrK (n) is a subset of the set of all states, \scrK (n) \subseteq \{ \phi 1, . . . , \phi K\} H , and \delta (\vec{}s \in \scrK (n)) is
again an indicator function (one if \vec{}s \in \scrK (n) and zero otherwise).

While truncated approximations have been shown to represent efficient approximation
of high accuracy for a number of sparse coding generative models (Lücke and Eggert,
2010; Bornschein et al., 2013; Henniges et al., 2014), they have so far only been applied

16

2.2. Mathematical Description

to binary latents. Here, we will generalize the application of truncated distributions to
variables with any (finite) number of discrete states.

Considering (2.4), we can first note that the assumptions for applying Expectation Trun-
cation (ET; Lücke and Eggert, 2010) are fulfilled for the DSC model (2.2) and (2.3) such
that we can derive a tractable free-energy given by:

\scrF (q,\Theta) =
\sum
n\in \scrM

\Biggl[\sum
\vec{}s

q(n)
\bigl(
\vec{}s; \Theta \mathrm{o}\mathrm{l}\mathrm{d}

\bigr) \bigl(
\mathrm{l}\mathrm{o}\mathrm{g} p

\bigl(
\vec{}y(n), \vec{}s | \Theta

\bigr) \bigr) \Biggr]
+H (q) (2.5)

where q(n)
\bigl(
\vec{}s; \Theta \mathrm{o}\mathrm{l}\mathrm{d}

\bigr)
is given in (2.4) and where H(q) is the Shannon entropy. Notice

that the summation over datapoints is no longer over the index set \{ 1, . . . , N\} but over
a subset \scrM of those datapoints that are best explained by the model. Since we use a
truncated posterior distribution we expect that we do not explain well the entire dataset
but rather a subset of it of size

\sum
\vec{}s\prime \in \scrK (n) p(\vec{}s\prime | \Theta)/

\sum
\vec{}s p(\vec{}s| \Theta). To populate \scrM we use

the datapoints with the highest value for
\sum

\vec{}s\in \scrK (n) p
\bigl(
\vec{}s, \vec{}y(n)| \Theta old

\bigr)
. It can be shown for a

large class of generative models (including the DSC model) (Lücke and Eggert, 2010),
that maximizing the free-energy (2.5) then approximately maximizes the likelihood for
the full dataset.

To get the optimal parameters for the model \Theta \ast = \{ \vec{}\pi \ast ,W \ast , \sigma \ast \} we take the gradient
of the free energy and seek the values of the parameters that set it to 0:

\nabla \scrF (q,\Theta) = \nabla
\sum
n\in \scrM

\Biggl[\bigl\langle
\mathrm{l}\mathrm{o}\mathrm{g} p

\bigl(
\vec{}y(n)| \vec{}s,\Theta

\bigr) \bigr\rangle
q(n) + \langle \mathrm{l}\mathrm{o}\mathrm{g} p (\vec{}s| \Theta)\rangle q(n)

\Biggr]

= \nabla
\sum
n\in \scrM

\Biggl[\biggl\langle
 - D

2
\mathrm{l}\mathrm{o}\mathrm{g}
\bigl(
2\pi \sigma 2

\bigr)
 - \sigma 2

2
\| \vec{}y(n) - W\vec{}s\| 22

\biggr\rangle
q(n)

+

\Biggl\langle \sum
h,k

\delta (\phi k, sh) \mathrm{l}\mathrm{o}\mathrm{g} \pi k

\Biggr\rangle
q(n)

\Biggr]
= 0 ,

where we denote with \langle g (\vec{}s)\rangle q(n) the expectation value of a function g (\vec{}s) under the dis-
tribution q(n)

\bigl(
\vec{}s; \Theta old

\bigr)
. For W and \sigma the results are

\nabla W\scrF (q,\Theta) = 0 \leftrightarrow W \ast =

\Biggl(\sum
n\in \scrM

\vec{}y(n)
\bigl\langle
\vec{}sT
\bigr\rangle
q(n)

\Biggr) \Biggl(\sum
n\in \scrM

\bigl\langle
\vec{}s\vec{}sT
\bigr\rangle
q(n)

\Biggr) - 1

(2.6)

\nabla \sigma \scrF (q,\Theta) = 0 \leftrightarrow \sigma \ast =

\sqrt{} 1

| \scrM | D

\Biggl\langle \sum
n\in \scrM

\| \vec{}y(n) - W\vec{}s\| 22

\Biggr\rangle
q(n)

(2.7)

17

2. Discrete Sparse Coding

where | \scrM | is the size of the set \scrM .
The prior parameter \pi k can be obtained in the same way if one introduces the constraint

to the free energy of having
\sum

k \pi k = 1 to maintain the normalized prior during the
gradient procedure.

\nabla \pi k
\scrF (q,\Theta) = 0 \leftrightarrow \pi \ast

k =
\langle \sum h \delta (\vec{}sh, k)\rangle q(n)\Bigl\langle \sum

k,h \delta (\vec{}sh, k)
\Bigr\rangle
q(n)

(2.8)

The parameter update equations (2.6), (2.7), and (2.8) require the computation of ex-
pectation values \langle g (\vec{}s)\rangle q(n) (the E-step). By inserting the truncated distribution (2.4) we
obtain:

\langle g (\vec{}s)\rangle q(n) =
\sum
\vec{}s

q(n) (\vec{}s) g (\vec{}s) =

\sum
\vec{}s\in \scrK (n) p

\bigl(
\vec{}s, \vec{}y(n)| \Theta old

\bigr)
g (\vec{}s)\sum

\vec{}s\in \scrK (n) p (\vec{}s, \vec{}y(n)| \Theta old)
(2.9)

where g (\vec{}s) is a function of the hidden variable \vec{}s (see parameter updates above). As
can be observed, the expectation values are now computationally tractable if | \scrK (n)| is
sufficiently small. At the same time, we can expect approximations with high accuracy if
\scrK (n) contains the hidden variables \vec{}s with the large majority of the posterior mass.

In order to select appropriate states \scrK (n) for a datapoint \vec{}y we use the joint of each
datapoint and the singleton posterior variables, i.e. variables that have only one non-zero
dimension, to identify the features that are most likely to have contributed to the datapoint
and only include those preselected states as in the posterior estimation. More formally,
we define

\scrK (n) =
\bigl\{
\vec{}s | \forall i \not \in \itI (n) : si = 0 and \| \vec{}s\| 0 \leq \gamma

\bigr\}
where \| \cdot \| 0 is the non-zero counting norm and where \itI (n) is an index set that contains
the indices of the H \prime basis functions that are most likely to have generated the datapoint
\vec{}y(n). The index set \itI (n) is in turn defined using a selection (or scoring) function. For our
purposes, we here choose a selection function of the following form:

\scrS h

\bigl(
\vec{}y(n)
\bigr)
= \mathrm{m}\mathrm{a}\mathrm{x}

\phi \prime \in \Phi

\bigl\{
p
\bigl(
sh = \phi , s

�h
= 0, \vec{}y(n)| \Theta old

\bigr) \bigr\}
\scrS h gives a high value for the index h if the generative field in the h-th column of W
contains common structure with the datapoint \vec{}y(n) regardless of the discrete scaling that
the model provides. In other words, the selection function uses the best matching discrete
value for each generative field as for a comparison with the other generative fields. The
H \prime fields with the largest values of \scrS h

\bigl(
\vec{}y(n)
\bigr)

are then used to construct the set of states
in \scrK (n). Using appropriate approximation parameters \gamma and H \prime , the sets \scrK (n) can contain
sufficiently many states to realize a very accurate approximation but sufficiently few states
in order to warrant sufficiently efficient scalability with H . Crucially, H \prime can maintain a
small value for many types of data while H increases.

18

2.3. Numerical Experiments

The M-step equations (2.6) to (2.8) together with approximate E-step equations (2.9)
using the truncated distributions 2.4 represent a learning algorithm for approximate maxi-
mization of the data likelihood under the discrete sparse coding model (Equations 2.2 and
2.3). We will refer to this algorithm as the Discrete Sparse Coding (DSC) algorithm, or
simply DSC.

2.3. Numerical Experiments

We test the DSC algorithm on four different types of data: artificial data, natural images,
extra-cellular neuronal recordings, and audio data of human speech. The artificial data
are generated using the DSC generative model and they are used to confirm the ability
of the DSC algorithm to learn the parameters of the generative model. The other three
types of data are commonly encountered in real world scientific tasks. There we show
that the DSC algorithm is capable of extracting interesting structure from the data while
using discrete latents and small sets of parameters. Notably, the developed algorithm
will enable learning of the K parameters of the prior distribution (alongside noise and
generative fields).

2.3.1. Artificial Data

We used a linear barstest (Hoyer, 2002; Henniges et al., 2010) to evaluate the ability of
the algorithm to recover optimal solutions for the likelihood. We generated N = 1000
datapoints using a DSC data model configuration with states \Phi = \{ - 2, - 1, 0, 1, 2\} and
parameters \vec{}\pi = (0.025, 0.075, 0.8, 0.075, 0.025) for the prior respectively. For the pa-
rameters W \in \{ 0, 10\} H\times D, we used H = 10 different dictionary elements of D = 25
observed dimensions. To simplify the visualization of such high dimensional observa-
tions, we choose each dictionary element to resemble a distinct vertical or horizontal bar
when reshaped to a 5 \times 5 image, with the value of the bar pixels to be equal to 10 and
the background 0, see Figure 2.1 C. The resulting datapoints were generated as linear
superposition of the basis functions, scaled by a corresponding sample from the prior.
Following the DSC generative model, we also added samples of a mean free Gaussian
noise with a standard deviation of \sigma = 2 to the data, example datapoints can be seen in
Figure 2.1 A.

Using the generated datapoints, we recovered the ground truth parameters by training
the model as described in Section 2. We initialized the standard deviation of the noise
model with the standard deviation of the observed variables \sigma y, the parameters W with
the mean datapoint plus Gaussian noise of with standard deviation of \sigma y/4, and the prior
parameters where initialized such that p (\vec{}sh = 0) = (H - 1)/H , and p (\vec{}sh \not = 0) was drawn
from a uniformly random distribution and scaled to satisfy the constraint that

\sum
h p (\vec{}sh) =

19

2. Discrete Sparse Coding

1. The approximation parameters for the truncated approximation scheme were H \prime = 7,
and \gamma = 5.

A

B

C

D E

Figure 2.1.: Results from training on natural images using the binary DSC model. A Ex-
ample datapoints sampled from the generative model. B The evolution of the
dictionary over iterations. Iteration 0 shows the initial values and iteration
100 the dictionary after convergence, no interesting changes occur after iter-
ation 25. C The ground truth values for the dictionary. D The learned prior
parameters (green) compared to the ground truth prior parameters (blue). E
The evolution of the model standard deviation (solid line) compared to the
ground truth(dashed line). Notice that due to the symmetric state configura-
tion the learned dictionary has identical structure with the ground truth but
not necessarily the same sign.

20

2.3. Numerical Experiments

We ran the DSC algorithm for 100 iterations using an annealing scheme described in
(Ueda and Nakano, 1998; Sahani, 1999) with the value of the temperature parameter to be
equal to 1 for the first 10 iterations and linearly decreased to 0, no annealing, by iteration
40. Furthermore, to avoid early rejection of datapoints we used all the datapoints for
training for the first 60 iterations and then proceeded to decrease the number of training
datapoints linearly to | M | by iteration 90.

After convergence of the algorithm, the learned parameters for \sigma and \vec{}\pi were observed
to match the generating parameters with high accuracy, see Figure 2.1 D, and E. For the
parameters W , we don’t recover the exact ground truth parameters, see Figure 2.1 B, and
C. The reason is that in this configuration of the model, and all symmetric ones, there are
multiple maximum likelihood solutions since it is equiprobable for a dictionary element
to contribute with either sign. Furthermore, we noticed that some configurations of the
algorithm are more likely to converge to locally optimal solutions than others.

These results show that we can successfully learn a correct dictionary for the data while
at the same time learning a value that parametrizes uncertainty of the discrete coefficients
and the scale of the isometric noise of the observed space.

2.3.2. Image Patches

Sparse Coding (Olshausen and Field, 1996) was originally proposed as a sensory coding
model for simple cell receptive fields in the primary visual cortex which was able to learn
biologically plausible filters from natural image patches. Since then there has been a lot
of effort in improving the original SC model, including approaches using alternatives to
the originally suggested prior distributions. While by far most work kept focusing on con-
tinuous priors, discrete priors in the form of Bernoulli priors for binary latents have been
investigated in previously (Haft et al., 2004; Henniges et al., 2010) (also compare non-
parametric Bayesian approaches, e.g., Griffiths and Ghahramani (2011)). Furthermore,
preliminary work for this study has investigated symmetric priors for three states (-1,0,1)
(Exarchakis et al., 2012). We will use these earlier approaches, i.e., (Binary Sparse Cod-
ing, BSC, Henniges et al., 2010) and (Ternary Sparse Coding, TSC, Exarchakis et al.,
2012), and their application to image patches as a further verification of the DSC algo-
rithm before we proceed to the more general case for this data domain.

The Data. The data set we used for DSC were a selection of images with no artificial
structures taken from the van Hateren image data set (van Hateren and van der Schaaf,
1998). We randomly selected N = 200 000 image patches of size 16\times 16, thus setting the
dimensionality of the data to D = 256 dimensions. As preprocessing, we first whitened
the data using PCA-whitening and then we rotated the whitened data back to the original
coordinate space using the set of highest principle components that corresponded 95\%
of the data variance, this technique is commonly referred to as zero-phase component

21

2. Discrete Sparse Coding

whitening or ZCA (Bell and Sejnowski, 1997).

Algorithm details. As in most SC variants, we were concerned with introducing an
algorithm that is overcomplete in the absolute number of dimensions. It is worth noting
at this point that the dimensionality of the model is not invariant of the model structure
so for different configurations the size of the hidden space should also change in order to
achieve the same level of accuracy. However, it is more clear to expose this behavior if
we use models with constrained dimensionality and we do that by fixing the number of
hidden dimension for all tasks to H = 300. To maintain similar results across different
configurations of the model we use the same training scheme. We ran the DSC algorithm
for 200 iterations. To avoid local optima we again used deterministic annealing, as de-
scribed in (Ueda and Nakano, 1998; Sahani, 1999), with an initial temperature for T = 2
that is decreased linearly to T = 0 between iterations 10 and 80. Furthermore, in order not
to reject any datapoints early in training we used the full data set for the first 20 iterations
and linearly decreased it to the set of best explained datapoints \scrM between iteration 20
and 60. In all cases, we used the same approximation parameters H \prime = 8 and \gamma = 5 to
maintain a comparable effect of the approximation on the results.

Discrete Sparse Coding with binary latents The binary configuration of DSC
(bDSC), with \Phi = \{ 0, 1\} , which recovers the binary sparse coding algorithm shows
emergence of Gabor-like receptive fields as expected from (Henniges et al., 2010). The
achievements highlighted in (Henniges et al., 2010) were primarily the high dimensional
scaling of the latent space, inference of sparsity (a notable difference to Haft et al.,
2004), and the recovery of image filters with statistics more familiar to those of primates
(Ringach, 2002) than earlier algorithms (Olshausen and Field, 1997), even though later
work reportedly improved on that further (Bornschein et al., 2013) (also compare Lücke,
2007, 2009; Rehn and Sommer, 2007; Zylberberg et al., 2011).

22

2.3. Numerical Experiments

Learned BasisLearned BasisLearned Basis
A

Learned BasisLearned Basis

C

Learned BasisLearned Basis

Crowdedness

Learned Basis

B
Standard Deviation

Iteration Iteration

Figure 2.2.: Results from training on natural images using the binary DSC model. A
Learned dictionary elements. B Model uncertainty parameter over EM iter-
ations. C Average number of non zero coefficients “crowdedness” over EM
iterations.

By applying bDSC reproduce earlier results, i.e., we recover, with Gabor-like and cen-
ter surround filters, biologically plausible ensemble filters in a high dimensional latent
space (H = 300), Figure 2.2 summarizes the obtained results. The work in (Henniges
et al., 2010) showed results with an even higher number of observed and latent dimen-
sions, however, the binary configuration of DSC has the same algorithmic complexity
as BSC and it is trivial to show that DSC can scale to the same size. Here, we chose
the lower dimensional observed and latent spaces to facilitate later comparison to the
computationally more demanding DSC applications with more latent states. Also note
that (Henniges et al., 2010) used a difference-of-Gaussian preprocessing instead of ZCA
whitening chosen here and this may have an effect on the resulting parameters.

Discrete Sparse Coding with ternary latents The next more complex DSC con-
figuration we tried is the ternary case (tDSC) in which we use the configuration \Phi =
\{ - 1, 0, 1\} . Unlike bDSC, tDSC is symmetric in the state space and therefore shares more
features with popular SC algorithms which utilize symmetric priors. However, in this
work we study symmetry only in terms of the states (i.e., - 1, 0, 1) but allow different

23

2. Discrete Sparse Coding

prior probabilities for each of these states (unlike Exarchakis et al., 2012, which assumed
the same probabilities for states - 1, and 1). The approximation parameters and training
schedule were set to be identical to the bDSC in order to facilitate the comparison of the
two configurations.

As the results in Figure 2.3 C show, tDSC converges to an almost symmetric prior,
even with non-symmetric initializations of the prior probability of non zero states. For
the DSC data model with configuration \Phi = (- 1, 0, 1) this means that any generative
field is similarly likely as its negative version.

Learned BasisLearned BasisLearned Basis
A

Learned BasisLearned Basis

D

Learned Basis

Standard Deviation

Learned Basis

Crowdedness

Learned Basis

CB Prior

Iteration Iteration

Figure 2.3.: Results from training on natural images using the ternary DSC model
, - 1, 0, 1 . A Learned dictionary elements. B Learned prior parameters. C
Model uncertainty parameter over EM iterations. D Average number of non
zero coefficients “crowdedness” over EM iterations.

Discrete Sparse Coding with multiple positive latents Finally, we turn to a
DSC configuration with a greater number of discrete states, and use \Phi = \{ 0, 1, 2, 3, 4\}
to investigate prior probability structures that are not elucidated by the bDSC and tDSC
models. Once more, the algorithmic details regarding this run can be viewed at the be-
ginning of section 2.3.2 and they remain the same across all configurations. The only
difference across the three different tests is the configurations of the algorithms.

The prior at convergence is monotonically decreasing with the increasing values of the
states suggesting that states of higher value have an auxiliary character. Furthermore, the

24

2.3. Numerical Experiments

shape of the prior distributions reinforces the argument for unimodal distributions. The
increased number of states also shows a decreased scale for the noise model at conver-
gence suggesting, once more, that an increased number of states provides a better fit for
the data, compare to Figure 2.3 and Figure 2.2.

Learned BasisLearned BasisLearned Basis
A

Learned BasisLearned Basis

D

Learned Basis

Standard Deviation

Learned Basis

Crowdedness

Learned Basis

CPrior parameteresB

Iteration Iteration

Figure 2.4.: Results from training on natural images using the DSC model with 0, 1, 2, 3, 4
states. A Learned dictionary elements. B Prior parameters at convergence. C
Model uncertainty parameter over EM iterations. D Average number of non
zero coefficients “crowdedness” over EM iterations.

The learned dictionary, Figure 2.4 A, shows a greater preference to localized features
suggesting that the algorithm is no longer trying to use multiple dictionary elements to
account for the scale in an image. Therefore, scaling “invariance” allows the dictionary
to explain finer detail in the structure.

Note that in this configuration the sparsity significantly decreases (crowdedness in-
creases, Figure 2.4) compared to the earlier two DSC configurations. It seems that the
scaling invariance, as discussed earlier, encourages the dictionary to explain fine detail
and with an increasing number of features explaining fine detail the crowdedness (spar-
sity decreases) also increases.

The study of natural image statistics is largely centered around sparse coding algo-
rithms with varying priors or introducing novel training schemes. In this work, we in-
troduce an extension of the ET algorithm that is able to learn the structure of the prior
distribution for arbitrary discrete states. With the three configurations described in this

25

2. Discrete Sparse Coding

section, we have used this feature to provide interesting insights about the structure of the
prior. Namely, we deduce that symmetry around 0 is a valid assumption for the definition
of a prior distribution and furthermore that distributions monotonically decreasing as they
move away from 0 are also a sensible choice. This is the case at least for the frequently
used linear superposition assumption and standard Gaussian noise.

2.3.3. Analysis of Neuronal Recordings

Information in the brain is widely considered to be processed in the form of rapid changes
of membrane potential across neurons, commonly know as action potentials or spikes.
This activity is often viewed as a natural form of discretization of continuous sensory
stimuli for later processing in the cortex.

A cost effective way to study the behavior of these neurons and the spike generating
process is to perform extra-cellular (EC) electrode recordings. However, when one ob-
serves the data obtained from an extra-cellular recording one sees various forms of noise
either structured, for instance spikes from remote neurons, or unstructured, such as sensor
noise. In this setting, we expect the DSC algorithm to provide interesting insights on the
analysis of neural data. Using, different configurations one can either explain overlapping
spikes, or as we attempt to show here, use the discrete scaling inherent to the algorithm
to explain background spikes, i.e. spikes of remote neurons, and high scaling to explain
relevant/near spikes, or the amplitude decay of spike trains using multiple high values.

In this work we will present a study of neural data using the DSC algorithm. To be
concise, we will focus on a single configuration of DSC that we believe best elucidates
most of the features of the algorithm.

Dataset We used the dataset described in (Henze et al., 2000, 2009). The dataset con-
tains simultaneous intra-cellular and extra-cellular recordings from hippocampus region
CA1 of anesthetized rats. We took the first EC channel of recording d533101, sampled at
10 kHz, and band-pass filtered it in the range of 400 - 4000 Hz and then we sequentially
extracted 2ms patches of the filtered signal with an overlap of 50\%. We used those patches
as the training datapoints for our algorithm. We also use the intra-cellular (IC) recording
provided by the dataset to better illustrate the properties of the uncertainty involved in EC
recordings.

Training We used a DSC configuration with 4 discrete states, \Phi = \{ 0, 1, 6, 8\} , to de-
scribe the structure of the data. This configuration was selected using the intuition that
spikes of distant neurons will have roughly the same shape as spikes of the relevant neuron
but at a smaller scale and therefore correspond to state 1 and the states 6, and 8 will ex-
plain features of the relevant neuron or nearby neurons for which we allow some variation
in strength. Note that a configuration of \Phi = \{ 0, 0.5, 3, 4\} would be equivalent because

26

2.3. Numerical Experiments

of the unnormalized columns of W . To choose the best model configuration we could use
the variance at convergence as a selection criterion, however, it is useful to make assump-
tions on a configuration by observing the data. The number of hidden variables, H = 40,
was selected to be slightly higher than the number of observed variables, D = 20, which
in turn correspond to 2ms of recording sampled at 10 kHz. The approximation parameters
for the ET algorithm were set to H \prime = 6 and \gamma = 4.

We initialize the noise scale \sigma as the mean standard deviation of the observed variables,
the columns of W using the mean of the datapoints plus a Gaussian noise with standard
deviation \sigma /4, and the parameters \vec{}\pi we initialized such that p (sh = 0) = (H - 1) /H
and p (sh \not = 0) is sampled from a uniformly random distribution under the constraint that\sum

h p (sh) = 1.

27

2. Discrete Sparse Coding

W1 W2 W3 W4 W5 W6 W7 W8

W9 W10 W11 W12 W13 W14 W15 W16

W17 W18 W19 W20 W21 W22 W23 W24

W25 W26 W27 W28 W29 W30 W31 W32

W33 W34 W35 W36 W37 W38 W39 W40

A

C D

0.0 0.5 1.0 1.5 2.0

−20

−15

−10

−5

0

5

10

15

W12B

Figure 2.5.: A The learned dictionary. Some of the basis develop as extra-cellular record-
ings of spikes similar to those seen in earlier literature. We also discover
components that can only be attributed to structured noise, e.g. from distant
neurons. B \vec{}W12, On the x-axis you see the duration in ms and y-axis the
voltage in mV. C The evolution of the model \sigma next to the original data std
(dashed). D The learned prior parameters \vec{}\pi

28

2.3. Numerical Experiments

We let the algorithm run for 200 EM iterations using a deterministic annealing schedule
(Ueda and Nakano, 1998; Sahani, 1999) with T = 1 for the first 10 iterations and proceed
to linearly decreasing it to T = 0 by iteration 80. Furthermore, in order to avoid early
rejection of interesting datapoints we force the algorithm to learn on all datapoints for
the first 60 iterations and then decrease the number of datapoints to | \scrM | by iteration 100,
always maintaining the datapoints with the highest value for

\sum
\vec{}s\in \scrK (n) p(\vec{}yn, \vec{}s), see Section

2.2.

In Figure 2.5 A, we see the dictionary as was formed at convergence. There we no-
tice potential shifts similar to the ones reported in (Henze et al., 2000) for the extra-
cellular recordings but also other elements that are more similar to finer details of poten-
tial changes. Such a decomposition of activity into district subspaces has been shown to
improve classification in many tasks and it could prove useful in identifying spiking ac-
tivity of different neurons in spike sorting systems. One should also take into account that
since there is no built-in temporal invariance in the model and there is no spike alignment
previously performed in the data, we sometimes observe similar features to appear shifted
across the time axis. These temporal shifts emerge as the DSC algorithm addresses tem-
poral alignment by populating the dictionary with time shifted elements. Figure 2.5 C
shows the evolution of the model noise scale \sigma compared to the total standard deviation
of the original signal. As expected, once our model accounts for the spikes, of near or
distant neurons, the noise in the signal becomes smaller. It is worth noting at this point
the correlation of \sigma orig with the presence of spikes in the signal. Figure 2.8 D shows the
learned prior. The result suggests that most spikes are active with a coefficient of 1 sug-
gesting that they belong to the background noise (modeling distant spike events received
by the electrode), then the most active coefficient is 6 suggesting that the dictionary ele-
ment describes firing scaled down, perhaps due to a spike burst, and the lowest probability
latent state is 8 which was intended to model spikes at their highest intensity.

To illustrate how well we were able to fit the data we reconstructed the extra-cellular
signal using the latent variables values with highest (approximate) posterior probabil-
ity), see Figure 2.7. More precisely, for each datapoint \vec{}y(n) we use the \vec{}s\ast \in \scrK (n)

that has the highest value for the truncated posterior qn (\vec{}s) and we reconstruct the dat-
apoint using the mean of the noise model \vec{}y(n) = W\vec{}s\ast . Since the datapoints were se-
lected as consecutive patches of the original recording with a 50\% overlap it was nec-
essary to find a sensible way to appropriately reconstruct the overlapping region. We
used the reconstruction contributed by the latent vector with the highest truncated pos-
terior to determine the reconstruction at the overlapping region, i.e. \^y+n = W+\vec{}s\ast with
\vec{}s\ast = \mathrm{a}\mathrm{r}\mathrm{g}\mathrm{m}\mathrm{a}\mathrm{x}\vec{}s\ast \{ qn (\vec{}s\ast) , qn+1 (\vec{}s

\ast)\} where \vec{}y+n is the last 50\% of the vector \vec{}y and W+ the
corresponding part of the rows of the W matrix. In Figure 2.7 A, we present the recon-
struction (green line) of the original extra-cellular signal (blue line). The decomposition
of the reconstruction in terms of generative fields (corresponding to the inferred states \vec{}s\ast

is visualized in Figure 2.7 B, C, D.

29

2. Discrete Sparse Coding

Original Signal

D
a
ta

p
o
in

ts

Figure 2.6.: Graphical representation of our treatment of a time series signal. We separate
the time series in segments and each datapoint for DSC is a patch of the
time series that starts at the first observation of each segment and covers two
consecutive segments. To reconstruct a datapoint we use W\vec{}s\ast , where \vec{}s\ast is
the MAP vector for each datapoint. To reconstruct a segment that appears
in more than one datapoint we use the reconstructed values of the datapoint
with the highest approximate posterior.

In Figure 2.8, we show the difference between the reconstructed time series and the
original. From the result, we observe that the model does very well at explaining back-
ground activity, however, on the locations of some action potentials it appears that there is
still relatively high uncertainty. Potentially, the relative frequency of spikes to background
is very low and therefore making the spikes a rare event and not captured very well by the
model. One could improve on that by either creating higher overlap between consecutive
patches allowing the dictionary to explain more details on the potential axis rather than
the time axis or to use some spike sorting preprocessing routine, such as spike detection
(Quiroga et al., 2004). In Figure 2.8 C, we see the corresponding IC recording. Note that
only two spikes belong to the targeted neuron.

30

2.3. Numerical Experiments

6300 6320 6340 6360 6380 6400
−300

−200

−100

0

100

200

m
V

[4
00

-4
00

0]
H

z

Original and Reconstructed SignalA.
Original EC
Reconstruction EC

6300 6320 6340 6360 6380 6400
−24

0

24

−24

0

24

−24

0

24

−24

0

24

14x1 22x1
8x6

40x1

5x6

11x1

2x1

7x6

14x1

35x8

21x1 40x1 13x1 11x1 22x1 22x8

26x8

2x1

21x1

6x1
8x6

28x1 3x1 14x1

17x6

10x1

21x1

4x1

6x1

9x8

33x8

6x1 31x1
16x6 27x6

40x1

18x6

19x6

37x1 14x1

22x1

n− 1B.

6300 6320 6340 6360 6380 6400
−24

0

24

−24

0

24

−24

0

24

−24

0

24

1x1 13x1 17x6 35x6
20x1 12x6

32x6

33x6

40x1

21x1 22x1 36x1 33x6
3x1

16x6

25x6

4x1

6x1

9x6

33x6

12x1 6x1

12x1

18x6 33x6
11x1

35x6

5x8

13x6

23x8

4x1

8x6 34x6

39x1

40x1 22x1 10x1

36x1

37x1

nC.

6300 6320 6340 6360 6380 6400

ms

−24

0

24

−24

0

24

−24

0

24

−24

0

24

31x1 35x6 13x1 26x6
39x1 2x6

14x6

27x6

12x1

13x1

35x6

21x1 40x1 1x1 10x1

22x1

38x6 13x8

23x6

12x1
18x6 30x6

6x1

36x1

24x1 32x1

38x6

14x6

15x1

18x8

22x1

8x6

21x1

21x1 9x6

29x1

28x1

34x6

19x6 36x1 25x6

40x1

13x1

32x1

n + 1D.

Figure 2.7.: A Reconstruction results of an EC recording. B-D Dictionary elements used
to reconstruct the signal. The time-axis are aligned - the plots B-D represent
three consecutive datapoints with 50\% overlap. The text above each line
denotes the element id times the scaling factor. The green(red) segments
of the elements were used(cut out) to reconstruct the corresponding part of
the time series.

31

2. Discrete Sparse Coding

6300 6320 6340 6360 6380 6400
−300

−200

−100

0

100

200

m
V

[4
00

-4
00

0]
H

z

Original and Reconstructed signalA.
Original EC
Reconstruction EC
5× σorig

5× σmodel

6300 6320 6340 6360 6380 6400
−300

−200

−100

0

100

200

Difference EC-RECB.
difference
5× σmodel

σmodel

6300 6320 6340 6360 6380 6400

−200

−100

0

100

200

300

m
V

Time-aligned intra-cellular recording (IC)C.
IC

6300 6320 6340 6360 6380 6400

ms
0

50

100

150

200

Model Spike MassD.

Figure 2.8.: A Reconstruction results of an EC recording. B The Difference between the
reconstructed and the original signal. C Time-aligned IC recording - only
two of the three clear spikes in A correspond to a spike from the targeted
neuron. D The energy contained in each reconstructed segment estimated
using

\sum
h sh

1
T

\sum
d | Wdh| .

32

2.3. Numerical Experiments

Part of a spike sorting task is spike identification. Spike identification is usually per-
formed used a threshold over the signal that is taken in a rather ad-hoc way to be at 5
times the standard deviation of the signal, e.g. see 5 \times \sigma orig in Figure 2.8 A (Quiroga
et al., 2004). In Figure 2.8 D, we propose an alternative based on the DSC model. The
barplot shows the sum of the l1 norm of all active dictionary elements at that point scaled
by the corresponding latent, i.e.

\sum
h sh

1
T

\sum
d | Wdh| for sh \in \vec{}s\ast where \vec{}s\ast is the highest

posterior latent vector. We expect this quantity to be a better spike detection measure
since it is invariant of noise in the signal. For instance, if the neuron was spiking more
frequently the threshold 5 \times \sigma orig we see in Figure 2.8 A would increase but 5 \times \sigma model

would remain the same because the spikes would be explained by the latent \vec{}s\ast . That
means the threshold, 5\times \sigma orig, applied in the signal varies with the neuron firing rate but
any threshold imposed on Figure 2.8 D would only be affected very mildly by variations
in the neuron firing rate.

2.3.4. Audio Data

For our final experimental setting we tested the algorithm on audio data of human speech.
We used the TIMIT database (Garofolo et al., 1993) to extract N = 100 000 datapoints
\vec{}y(n) in the form of D = 60-dimensional consecutive waveforms with an overlap of 50\%.
We used H = 100 hidden random variables to describe the data under the DSC generative
model with a configuration \Phi = \{ - 2, - 1, 0, 1, 2\} .

For the training, we initialize each column of the dictionary matrix W \in \BbbR D\times H using
a non silent datapoint, defined as a datapoint with a norm greater than 1, i.e. \| \vec{}y(n)\| 1 >
1. The prior parameter \vec{}\pi was initialized such that p (sh = 0) = (H - 1) /H and the
probabilities of the non zero states we randomly drawn from a uniform distribution under
the constraint that

\sum
h p (sh) = 1. The scale of the noise model \sigma was initialized as the

average standard deviation of each observed variable.
We ran the DSC algorithm for 200 iteration and verified convergence by a stability

check of the parameters over EM iterations. During the run we used an annealing schedule
described in (Ueda and Nakano, 1998) with the annealing parameter starting at T = 1/9
and decaying it linearly to 0 by iteration 50. We also avoided datapoint cutting until
iteration 20 and then proceeded to linearly decrease the datapoints to | M | by iteration 80
as per the algorithm description in section 2.2.

At convergence we noticed that the learned dictionary, see Figure 2.9, is composed of
both temporally localized components and global components. The dictionary compo-
nents are frequently constrained to a single frequency although frequency mixing is not
unlikely. The prior emerges to be symmetric around zero even thought no such constraint
was imposed by the model and we also see a considerable decrease in the scale of the
noise model which suggests a good fit.

33

2. Discrete Sparse Coding

W1 W2 W3 W4 W5 W6 W7 W8

W9 W10 W11 W12 W13 W14 W15 W16

W17 W18 W19 W20 W21 W22 W23 W24

W25 W26 W27 W28 W29 W30 W31 W32

W33 W34 W35 W36 W37 W38 W39 W40

W41 W42 W43 W44 W45 W46 W47 W48

W49 W50 W51 W52 W53 W54 W55 W56

W57 W58 W59 W60 W61 W62 W63 W64

W65 W66 W67 W68 W69 W70 W71 W72

W73 W74 W75 W76 W77 W78 W79 W80

W81 W82 W83 W84 W85 W86 W87 W88

W89 W90 W91 W92 W93 W94 W95 W96

W97 W98 W99 W100

Figure 2.9.: Columns of dictionary matrix, W , after convergence of the algorithm.

34

2.3. Numerical Experiments

A B

Figure 2.10.: A prior parameters at convergence. B the evolution of the standard deviation
of the model during ET algorithm iterations

Similarly to the neural data analysis section 2.3.3, we used the reconstruction of a time
series segment to evaluate how well we were able to fit the data. Once more, for each
datapoint \vec{}yn we use the \vec{}s\ast \in \scrK (n) that has the highest value for the truncated posterior
qn (\vec{}s) and we reconstruct the datapoint using the mean of the noise model \^yn = W\vec{}s\ast . For
the overlapping region we, again, use the reconstruction of the data point with the highest
truncated posterior for \vec{}s\ast . In Figure 2.11 A, we can see the reconstruction (red line) of the
original waveform (blue line). The decomposition of the reconstruction can be seen in the
following to subplots B, C, D over 3 consecutive datapoints n - 1, n, n + 1 respectively.
The vertical lines are aligned in time across the four subplots and they represent the time
limits for the reconstructed patches

35

2. Discrete Sparse Coding

2070 2080 2090 2100 2110 2120

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

pr
es

su
re

Original and Reconstructed SignalA.
Original
Reconstruction

2070 2080 2090 2100 2110 2120
−0.0418

0
0.0418

−0.0418
0

0.0418

−0.0418
0

0.0418

−0.0418
0

0.0418

46x2 46x2

58x1

61x-1

46x-1

97x-1

40x-1

49x-1

80x1

83x1

11x1

41x1

56x-1

54x1
25x-1

52x1

55x-1

33x1
2x-1

12x1

82x1

95x-1

60x-1

85x1

92x-1

59x-1

86x-2

n− 1B.

2070 2080 2090 2100 2110 2120
−0.0418

0
0.0418

−0.0418
0

0.0418

−0.0418
0

0.0418

−0.0418
0

0.0418

34x2

63x1

98x1

25x-1

86x1

46x2

58x1

61x-1

46x-1

86x-1

65x2

83x1

41x1

56x-1

98x1

97x-1

100x-1

36x1

42x1

86x2

80x1

97x1

2x2

83x-1

99x-1

nC.

2070 2080 2090 2100 2110 2120

ms

−0.0418
0

0.0418

−0.0418
0

0.0418

−0.0418
0

0.0418

−0.0418
0

0.0418

59x1

97x-1

26x-1

40x-1

65x1

11x1

34x2

63x1

54x1
25x-1

46x2

58x1

86x-2 39x2

65x2

56x-1

60x-1

98x2

46x-2

97x-1

36x1

54x1

100x-2

75x-1

86x1

n + 1D.

Figure 2.11.: A Reconstruction results of an audio waveform. B-D Dictionary elements
used to reconstruct the signal. The time-axis are aligned - the plots B-D
represent three consecutive datapoints. The text above each line denotes the
element id times the scaling factor. The green(red) segments of the elements
were used(rejected) to reconstruct the corresponding part of the time series.

36

2.4. Discussion

The red lines, in Figures 2.11 B-D, represent the reconstruction of the component with
the highest truncated posterior from two consecutive datapoints - used to reconstruct the
datapoint. The blue lines represent the component with the lower truncated posterior -
rejected for the reconstruction.

2.4. Discussion

We have proposed a novel sparse coding algorithm with discrete latent variables, and we
have shown that we are capable of efficiently learning model parameters for generative
fields, noise and of the models discrete prior distribution. Efficient learning was realized
by adapting truncated approximations (ET; Lücke and Eggert, 2010) to work on latent
spaces of multiple discrete states.

In this section we will discuss the interpretation of discrete latents in the Discrete Sparse
Coding setting, the significance of varying discrete state spaces in image modeling, the
properties that make a Discrete Sparse Coding algorithm relevant to spike analysis of
neural data and the efficiency of discrete sparse coding in fitting audio waveform.

Discrete Latent variables for Sparse Coding. Sparse Coding algorithms were
originally proposed as a method that deviates from traditional Gaussian encoding schemes
to make encoding more selective to an axis and therefore implicitly forcing the features
to be more descriptive of a given data structure. Constraining the hidden space to binary
values provides an on/off encoding scheme that is selective to image structure aligned with
standard Sparse Coding. Discretizing in an arbitrary domain, however, utilizes the sparse
coding principle to learn structure in the scale space of the data that would otherwise have
been neglected or averaged out, for instance if we used continuous scaling values. The
work presented in this paper shows that it is possible to efficiently learn a high dimensional
discrete sparse coding model. Furthermore, we have shown that it is possible to learn a
wider range of parameters than typical sparse coding algorithms such as the scale of the
noise model and, more importantly here, parameters of a flexible prior.

Image Encoding. We have shown that our algorithm was able to scale to several real
world high dimensional tasks. For image encoding, we have verified the functionality of
our algorithm by first replicating previous (Henniges et al., 2010) and preliminary (Exar-
chakis et al., 2012) results using specific configurations of the DSC model. Furthermore,
we have shown that scaling invariance in image encoding allows the filters to specialize
in image structure rather than pixel intensity. Learning the prior parameters in differ-
ent configurations of DSC has also shown us the distribution of the learned dictionary in
scale space without any functional constraints like the ones commonly imposed by sparse
coding algorithms with continuous latents (e.g., Laplace distribution/l1 sparsity penalty).

37

2. Discrete Sparse Coding

Identifying the appropriate shape for the prior of the SC latents has been a persistent re-
search area in natural image statistics research (Olshausen and Millman, 2000; Hyvärinen
et al., 2005; Berkes et al., 2008; Mohamed et al., 2010; Goodfellow et al., 2013; Sheikh
et al., 2014). Since the prior of DSC does not define a density function and it can take
arbitrary discrete values, we can use it to try and sketch the necessary qualities of a nat-
ural image prior. The combination of the tDSC, and mDSC configurations used in this
paper provides a description of desired properties for the form of the prior in sparse cod-
ing algorithms with linear superposition and Gaussian noise. Namely, the tDSC results
support the use of symmetric priors that have been used ubiquitous in the field and the
mDSC supports the argument for unimodal priors, since prior parameters value mono-
tonically decrease away from zero. It is important to note, however, that convergence
to local optima has been observed for artificial data making it difficult to guarantee the
optimality of the learned shapes. Also note, that the shapes emerge under given the data
distributions modeled by the DSC data model. While being general for discrete data, they
do use standard assumptions of linear superposition and Gaussian noise model common.
These assumptions are shared with the large majority of sparse coding approaches but al-
ternatives models have been suggested in the past (Lücke and Sahani, 2008; Frolov et al.,
2016; Bornschein et al., 2013; Henniges et al., 2014).

Discrete Latent variables for Neural Data Analysis. We used neural data to eval-
uate the performance of our algorithm due to their popular interpretation as sequences of
discrete events. In this analysis, we showed that DSC can learn spike and sub-spike fea-
tures that sufficiently describe neural recordings. Furthermore, carefully selecting the
scale space makes it possible to discern physiological characteristics of temporal align-
ment, for instance whether a given spike is the initial event or a secondary spike in a
spike burst. Notably, one of the most unique features of our algorithm, learning prior pa-
rameters was very informative about the structure of extra-cellular (EC) recordings. The
learned prior interprets EC recordings as being composed of a multitude of spiking pat-
terns coming from a population of neurons around the targeted neuron. Furthermore, the
fact that we can learn a Gaussian noise model distinct from the spiking activity provides
a more clear separation of noise from spikes than those traditionally seen in spike sorting
tasks (Quiroga et al., 2004).

Discrete Latent variables for Audio Data The DSC algorithm was fitted to audio
data successfully. The reconstruction has shown intelligible speech even though we did
not use any hand crafted features of human speech suggesting that we were able to learn
elementary short-time primitives human speech. The fact that a sparse discrete encoding
of speech can capture these features implies that such a prior can be useful for speech
encoding.

38

2.4. Discussion

Conclusion To conclude we have derived, implemented and tested a novel sparse cod-
ing algorithm. Whenever it is reasonable to assume that the hidden variables are discrete,
the studied approach offers itself to learn a statistical data model (which can then be used
for different tasks). Furthermore, our model covers the general class of (finite) discrete
priors under the canonical sparse coding assumptions of iid and sparsely distributed la-
tents. Its parameterization of discrete latents is thus much more general than any example
of sparse coding with continuous latents. As sparse coding plays an important role in Ma-
chine Learning and its many fields of application, we believe that Discrete Sparse Coding
will be the method of choice for a large number of applications.

39

3. Time-Invariant Discrete Sparse
Coding

3.1. Introduction

We have seen that discrete sparse coding can have many useful applications and provides
interesting insights in a variety of applications. However, especially when we have to
deal with data that have temporal structure there are issues that DSC does not address and
we have to use rather crude ways of manipulating the data, e.g. overlapping patches. In
the neural data example in particular we have a discrete encoding that represents spiking
patterns in extra-cellular recordings. However, as we can see from the dictionary ele-
ments in order to represent spikes at different locations in time we need to use multiple
dictionary elements. In a spike sorting task that would be an undesirable effect. Ideally,
a generative model would assign one latent variable for each different neuron that affects
the electrode. To address that issue in this section we introduce an extension to the DSC
model that captures the temporal alignment of a dictionary element using and additional
latent variable. This additional variable separates the signal into two structural element of
the signal the location and its content. Introducing an additional latent variable increases
the size of the posterior space significantly. However, it has been shown (Dai et al., 2013)
that truncated methods can deal with features invariant to translation. It is our intension
to introduce a similar extension for the DSC model in this work.

3.2. Mathematical Description

Consider a set, Y , of N independent datapoints \vec{}y(n), with n = 1, . . . , N , where \vec{}y(n) \in
\BbbR D. For these data the studied learning algorithm seeks parameters \Theta \ast = \{ W \ast , \sigma \ast , \vec{}\pi \ast \}
that maximize the data log-likelihood:

\scrL (Y | \Theta) = \mathrm{l}\mathrm{o}\mathrm{g}
N\prod

n=1

p
\bigl(
\vec{}y(n)| \Theta

\bigr)
=

N\sum
n=1

\mathrm{l}\mathrm{o}\mathrm{g} p
\bigl(
\vec{}y(n)| \Theta

\bigr)

41

3. Time-Invariant Discrete Sparse Coding

Sparse coding models are latent variable models and therefore the likelihood is defined as
a function of unobserved random variables as follows

\scrL (\vec{}\bfity | \Theta) =
N\sum

n=1

\mathrm{l}\mathrm{o}\mathrm{g} p
\bigl(
\vec{}y(n)| \Theta

\bigr)
=

N\sum
n=1

\mathrm{l}\mathrm{o}\mathrm{g}
\sum
\vec{}s,\vec{}t

p
\bigl(
\vec{}y(n)| \vec{}s,\vec{}t,\Theta

\bigr)
p
\bigl(
\vec{}s,\vec{}t | \Theta

\bigr)
(3.1)

where the latent variables \vec{}s, are taken to have discrete values, similarly to DSC, and the
latent variables \vec{}t, are assumed to encode all possible translations for a dictionary element.
Therefore, the sum

\sum
\vec{}s,\vec{}t now goes over all different combinations of discrete states and

all differente temporal displacements. Let \vec{}s be of length H , i.e. \vec{}s = (s1, . . . , sH)
T ,

where each element sh can take on one of K discrete values \phi k \in \BbbR , i.e. sh \in \Phi =
\{ \phi 1, . . . , \phi K\} . Also, let \vec{}t be of length H , i.e. \vec{}t = (t1, . . . , tH)

T , where each element
th can take on one of \tau discrete values representing indices in the range \{ 1, . . . , \tau \} , i.e.
th \in \{ 1, . . . , \tau \} . For such latents, we can define the following prior:

p(\vec{}s,\vec{}t | \Theta) =
H\prod

h=1

K\prod
k=1

\pi k

\tau

\delta (\phi k=sh)

, with
K\sum
k=1

\pi k = 1, (3.2)

where \delta (\phi k = sh) is an indicator function which is one if and only if \phi k = sh and zero
otherwise. Similarly to DSC, we have a different probability of presence for different
states, paramterized by \vec{}\pi , and the different states \Phi describe, again, a different configu-
ration. We assume that the prior over the variables th is uniform. As for standard sparse
coding, Equation 3.2 assumes independent and identical distributions for each pair of la-
tents sh, th. The prior will be used to model sparse activity by demanding one of the
values in \Phi = \{ \phi 1, . . . , \phi K\} to be zero and the corresponding probability to be relatively
high.

Having defined the prior (3.2), we assume the observed variables \vec{}y to be generated as
follows. For each column of the dictionary matrix, W \in \BbbR Dw\times H , we crop a patch of size
Dy starting from dimension th, we will denote this operation as f

\bigl(
W,\vec{}t

\bigr)
= W (t), where

W (t) \in \BbbR Dy\times H . The assumption here is that each datapoint \vec{}y offers a view of the data that
is constrained in time and through the use of the latent variable \vec{}t we model the precise
time in which an event took place. This definition for the generative process assumes that
Dw > Dy, and \tau = Dw - Dy + 1. Once we have generated the temporally constrained
dictionary matrix, we proceed to generating the datapoints as in DSC, i.e., we assume that
\vec{}y is governed by a Gaussian noise model with a mean set by a linear superposition of the
latents sh:

p
\bigl(
\vec{}y | \vec{}s,\vec{}t,\Theta

\bigr)
= \scrN

\bigl(
\vec{}y; f

\bigl(
W,\vec{}t

\bigr)
\vec{}s, \sigma 21

\bigr)
= \scrN

\bigl(
\vec{}y;W (t)\vec{}s, \sigma 21

\bigr)
(3.3)

with an isotropic covariance, \sigma 21 , and mean W (t)\vec{}s. We call the data model defined by

42

3.2. Mathematical Description

(3.2) and (3.3) the time-invariant discrete sparse coding (iDSC) data model.

iDSC Generative Model

DSC Generative Model

Figure 3.1.: A Graphical representation of the iDSC Generative Model. The figure shows
the effect of the variable \vec{}t on the dictionary elements. The black vertical bar
are the columns of the dictionary matrix W . The vector \vec{}t selects a subspace
of each column that is best aligned with \vec{}y and has the same dimensionality
as \vec{}y through the function f

\bigl(
W,\vec{}t

\bigr)
= W (t). Therefore, given a variable \vec{}t we

fall back to the DSC generative model p
\bigl(
\vec{}y,\vec{}s| \vec{}t

\bigr)
Given a set of datapoints \vec{}y(1), . . . , \vec{}y(N) and the DSC data model, we now seek pa-

rameters \Theta = (W,\sigma , \vec{}\pi) that maximize the likelihood (3.1). We derive parameter update
equations using Expectation Maximization in its free-energy formulation (Neal and Hin-
ton, 1998). In our case, exact EM update equations can be derived in closed-form but the
E-step scales with the number of hidden states \scrO (KH\tau H), making the algorithm compu-
tationally intractable for large H .

In order to derive computationally tractable approximations for parameter optimiza-
tion, we approximate the intractable a-posteriori probabilities p(\vec{}s,\vec{}t | \vec{}y,\Theta) by a truncated
distribution:

p(\vec{}s,\vec{}t | \vec{}y(n),\Theta) \approx q(n)(\vec{}s,\vec{}t; \Theta) =
p(\vec{}s,\vec{}t | \vec{}y(n),\Theta)\sum

\vec{}t\prime \in \scrT (n),\vec{}s\prime \in \scrK (n) p(\vec{}s\prime | \vec{}y(n),\Theta)
\delta (\vec{}s \in \scrK (n))\delta (\vec{}t \in \scrT (n)),

(3.4)
where \scrK (n) is a subset of the set of all states, \scrK (n) \subseteq \{ \phi 1, . . . , \phi K\} H , \scrT (n) is a subset of
the set of all states, \scrT (n) \subseteq \{ 0, . . . , \tau \} H , and \delta (\vec{}s \in \scrK (n)) and \delta (\vec{}t \in \scrT (n)) are again an
indicator functions.

In an earlier section 2.2, we covered a truncated approximation for DSC. Here, we will
go through a further extension of a truncted EM approximation that covers latent variables
for temporal shifts as well as scaling coefficients.

43

3. Time-Invariant Discrete Sparse Coding

Considering (3.4), we can first note that the assumptions for applying Expectation Trun-
cation (ET; Lücke and Eggert, 2010) are fulfilled for the iDSC model (3.2) and (3.3) such
that we can derive a tractable free-energy given by:

\scrF (q,\Theta) =
\sum
n\in \scrM

\Biggl[\sum
\vec{}s,\vec{}t

q(n)
\bigl(
\vec{}s,\vec{}t; \Theta old\bigr) \bigl(\mathrm{l}\mathrm{o}\mathrm{g} p \bigl(\vec{}y(n), \vec{}s,\vec{}t | \Theta \bigr) \bigr) \Biggr] +H (q) (3.5)

where q(n)
\bigl(
\vec{}s,\vec{}t; \Theta old

\bigr)
is given in (3.4) and where H(q) is the Shannon entropy. Notice

that the summation over datapoints is no longer over the index set \{ 1, . . . , N\} but over
a subset \scrM of those datapoints that are best explained by the model. Since we use a
truncated posterior distribution we expect that we do not explain well the entire dataset
but rather a subset of it of size

\sum
\vec{}s\prime \in \scrK (n),\vec{}t\prime \in \scrT (n) p(\vec{}s\prime ,\vec{}t\prime | \Theta)/

\sum
\vec{}s,\vec{}t p(\vec{}s,\vec{}t | \Theta). To populate \scrM

we use the datapoints with the highest value for
\sum

\vec{}s\in \scrK (n),\vec{}t\in \scrT (n) p
\bigl(
\vec{}s,\vec{}t, \vec{}y(n)| \Theta old

\bigr)
. It can

be shown for a large class of generative models (including the iDSC model) (Lücke and
Eggert, 2010), that maximizing the free-energy (3.5) then approximately maximizes the
likelihood for the full dataset.

To get the optimal parameters for the model \Theta \ast = \{ W \ast , \sigma \ast , \vec{}\pi \ast \} we take the gradient
of the free energy and seek the values of the parameters that set it to 0:

\nabla \scrF (q,\Theta) = \nabla
\sum
n\in \scrM

\Biggl[\bigl\langle
\mathrm{l}\mathrm{o}\mathrm{g} p

\bigl(
\vec{}y(n)| \vec{}s,\vec{}t, \Theta

\bigr) \bigr\rangle
q(n) +

\bigl\langle
\mathrm{l}\mathrm{o}\mathrm{g} p

\bigl(
\vec{}s,\vec{}t| \Theta

\bigr) \bigr\rangle
q(n)

\Biggr]

= \nabla
\sum
n\in \scrM

\Biggl[\biggl\langle
 - D

2
\mathrm{l}\mathrm{o}\mathrm{g}
\bigl(
2\pi \sigma 2

\bigr)
 - \sigma 2

2
\| \vec{}y(n) - f

\bigl(
W,\vec{}t

\bigr)
\vec{}s\| 22
\biggr\rangle

q(n)

+

\Biggl\langle \sum
h,k

\delta (\phi k, sh) \mathrm{l}\mathrm{o}\mathrm{g}
\pi k

\tau

\Biggr\rangle
q(n)

\Biggr]
= 0 ,

where we denote with \langle g (\vec{}s)\rangle q(n) the expectation value of a function g (\vec{}s) under the dis-
tribution q(n)

\bigl(
\vec{}s; \Theta old

\bigr)
. For W and \sigma the results are

\nabla W\scrF (q,\Theta) = 0 \leftrightarrow W \ast =

\Biggl(\sum
n\in \scrM

\Bigl\langle
\vec{}y
(n)

 - \vec{}t
\vec{}sT
\Bigr\rangle
q(n)

\Biggr) \Biggl(\sum
n\in \scrM

\bigl\langle
\vec{}s\vec{}sT
\bigr\rangle
q(n)

\Biggr) - 1

(3.6)

\nabla \sigma \scrF (q,\Theta) = 0 \leftrightarrow \sigma \ast =

\sqrt{} 1

| \scrM | D

\Biggl\langle \sum
n\in \scrM

\| \vec{}y(n) - f
\bigl(
W,\vec{}t

\bigr)
\vec{}s\| 22

\Biggr\rangle
q(n)

(3.7)

where | \scrM | is the size of the set \scrM . Notice that Equation 3.6 changes when compared to
DSC in order to account for proper alignment of the datapoints. The vector \vec{}y(n) - t is of the

44

3.2. Mathematical Description

same dimensionality as a column W and it contains the datapoint \vec{}y(n) in the dimensions
specified by variable \vec{}t and 0 everywhere else. 1

The prior parameter \pi k can be obtained in the same way if one introduces the constraint
to the free energy of having

\sum
k \pi k = 1 to maintain the normalized prior during the

gradient procedure.

\nabla \pi k
\scrF (q,\Theta) = 0 \leftrightarrow \pi \ast

k =
\langle \sum h \delta (\vec{}sh, k)\rangle q(n)\Bigl\langle \sum

k,h \delta (\vec{}sh, k)
\Bigr\rangle
q(n)

(3.8)

The parameter update equations (3.6), (3.7), and (3.8) require the computation of ex-
pectation values

\bigl\langle
g
\bigl(
\vec{}s,\vec{}t
\bigr) \bigr\rangle

q(n)
(the E-step). By inserting the truncated distribution (3.4)

we obtain:

\bigl\langle
g
\bigl(
\vec{}s,\vec{}t
\bigr) \bigr\rangle

q(n) =
\sum
\vec{}s,\vec{}t

q(n)
\bigl(
\vec{}s,\vec{}t
\bigr)
g
\bigl(
\vec{}s,\vec{}t
\bigr)
=

\sum
\vec{}s\in \scrK (n),\vec{}t\in \scrT (n) p

\bigl(
\vec{}s,\vec{}t, \vec{}y(n)| \Theta old

\bigr)
g (\vec{}s)\sum

\vec{}s\in \scrK (n),\vec{}t\in \scrT (n) p
\bigl(
\vec{}s,\vec{}t, \vec{}y(n)| \Theta old

\bigr) (3.9)

where g (\vec{}s) is a function of the hidden variable \vec{}s (see parameter updates above). As
can be observed, the expectation values are now computationally tractable if | \scrK (n)| , and
| \scrT (n)| are sufficiently small. At the same time, we can expect approximations with high
accuracy if \scrK (n),\scrT (n) contain the hidden variables \vec{}s, and \vec{}t with the large majority of the
posterior mass.

In order to select appropriate states \scrK (n) for a datapoint \vec{}y we use the joint of each
datapoint, the singleton posterior variables \vec{}s, i.e. variables \vec{}s that have only one non-zero
dimension, and all the time shifts for the non-zero dimensions, to identify the features that
are most likely to have contributed to the datapoint and only include those preselected
states as in the posterior estimation. More formally, we define

\scrK (n) =
\bigl\{
\vec{}s | \forall i \not \in \itI (n) : si = 0 and \| \vec{}s\| 0 \leq \gamma

\bigr\}
where \| \cdot \| 0 is the non-zero counting norm, \itI (n) is an index set that contains the indices
of the H \prime basis functions that are most likely to have generated the datapoint \vec{}y(n). The
index set \itI (n) is in turn defined using a selection (or scoring) function. For our purposes,
we here choose a selection function of the following form:

\scrS h

\bigl(
\vec{}y(n)
\bigr)
= \mathrm{m}\mathrm{a}\mathrm{x}

\phi \prime \in \Phi

\bigl\{
p
\bigl(
sh = \phi , s

�h
= 0, th, \vec{}y

(n)| \Theta old\bigr) \bigr\}
\scrS h gives a high value for the index h if the generative field in the h-th column of W
contains common structure with the datapoint \vec{}y(n) regardless of the discrete scaling or the
temporal shift that the model provides. The H \prime fields with the largest values of \scrS h

\bigl(
\vec{}y(n)
\bigr)

1For more details see appendix B.1

45

3. Time-Invariant Discrete Sparse Coding

are then used to construct the set of states in \scrK (n), i.e. their indices are used to form the
index set \itI (n).

The set of time shifts \scrT (n) that we use for the truncated posterior of a datapoint \vec{}y(n) is
populated, again, through the use of the joint probability of each datapoint \vec{}y(n), the sin-
gleton states \vec{}s, and all the time shifts each dictionary element only this time we maintain
the most likely time shifts for each dicitonary element.

\scrT (n) =
\Bigl\{
\vec{}t | th = \rho

(n)
 - \beta (h)

\Bigr\}
where \rho

(n)
 - \beta (h) is a sequence of indices th \in \{ 1, . . . , \tau \} that yield the \beta highest values

for p
\bigl(
sh \in \Phi , s

�h
= 0, th | \Theta \mathrm{o}\mathrm{l}\mathrm{d}

\bigr)
. We therefore store in \scrT (n) the \beta different time shifts that

align a dictionary element with the datapoint \vec{}yn best independently for each dictionary
element. Using appropriate approximation parameters \beta , \gamma and H \prime , the sets \scrK (n), and \scrT (n)

can contain sufficiently many latent variables to realize a very accurate approximation at
a sufficiently low computational cost even for high dimensional problems, i.e. our latent
space no longer scales with the variable H .

Equations (3.6) to (3.8) and Equation (3.9) form the M-step and E-step of a truncated
EM algorithm that maximizes the data likelihood of the iDSC generative model (Equa-
tions 3.2 and 3.3).

3.3. Numerical Experiments

In the Discrete Sparse Coding chapter (2) we introduced a method of applying the DSC
algorithm on time series data by separating the sequence of observations into overlapping
segments to account for the temporal structure in the data. That was a rather crude treat-
ment of the temporal structure of the signal which forced the algorithm to compensate
using multiple generative fields for the same spikes at different temporal locations. The
iDSC algorithm is better equipped to deal with discrete events in time series data. Us-
ing the additional variables for temporal alignment, we expect to extract features that are
invariant to temporal alignment. In this section we apply the iDSC algorithm to the extra-
cellular neuron recordings dataset we used in section 2.3.3 to examine whether we can
achieve a better separation of spiking neurons. We also apply the iDSC algorithm to the
audio dataset we used in section 2.3.4 to examine the behavior of the effect of temporal
alignment on audio data of human speech.

3.3.1. Spike Sorting

In 2.3.3 we saw the DSC algorithm applied to patches of extra-cellular (EC) recordings.
The main idea there was to identify discrete events (e.g. spikes) in a continuous signal.

46

3.3. Numerical Experiments

Spiking neurons are characterized by the shape of their spiking potential and the timing
of the spiking event. In the neural data analysis, in 2.3.3, we noticed that the dictionary
contained spikes of the same shape but slightly shifted left or right. This behavior suggests
that the variable responsible to identify the presence of a spike or not in the signal (\vec{}s)
was also responsible for the timing of the spike. Using the iDSC model, we have a
clear separation between variables that encode the timing and variables that encode the
presence of a spike. Therefore, we expect the iDSC model to characterize a spiking
neurons contribution to the recording more rigorously and successfully separate across
different spiking neurons, essentially solving the spike sorting problem.

Here, we will apply the iDSC algorithm on the same dataset of neural recordings as in
2.3.3 and compare the behavior of the two algorithms.

Dataset We used the same dataset (Henze et al., 2000, 2009) as in the neural data anal-
ysis of the earlier section 2.3.3. The dataset contains simultaneous intra-cellular and extra-
cellular recordings from hippocampus region CA1 of anesthetized rats. Once more, we
took the first EC channel of recording d533101, sampled at 10 kHz, and band-pass filtered
it in the range of 400 - 4000 Hz and then we sequentially extracted 2ms patches of the
filtered signal. This time there was no overlap between consecutive patches since we as-
sume that the temporal component of the iDSC data model will generate a smooth enough
result. As in the earlier section we compare against the temporally aligned intra-cellular
(IC) recording to evaluate the the correspondence between the representation learned by
the iDSC algorithm and the behavior of the target neuron.

Training We used an iDSC configuration with 2 discrete states, \Phi = \{ 0, 1\} , to describe
the structure of the data. We selected this configuration because we want to focus on the
discrete nature of the spiking activity, and the timing of a spike and not any potential
scaling. It is worth to note, however, that scaling behavior changes across DSC and iDSC
algorithms suggesting that there is an interplay amongst latent variables responsible for
time and scale2, i.e. scaling appears to account for timing if it is not explicitly modeled.
The number of hidden variables, H = 10, was selected as the anticipated number of
distinct neurons that affect the electrode (as reported by Henze et al., 2000), Dy = 20,
which in turn correspond to 2ms of recording sampled at 10 kHz. The dimensionality
of the dictionary elements was set to be Dw = 40 so that a dictionary element can be
aligned throughout the length of a datapoint. The approximation parameters for the iDSC
algorithm were set to H \prime = 6, \gamma = 4, and \beta = 10 to maintain similar efficiency as in the
DSC case.

We used the same initialization strategy as for the DSC algorithm. Therefore, the
standard deviation \sigma of the Gaussian noise model (Equation 3.3) is initialized as the

2see Discussion at the end of the chapter.

47

3. Time-Invariant Discrete Sparse Coding

mean standard deviation of the observed variables, the columns of the dictionary ma-
trix, W , using the mean of the datapoints plus a Gaussian noise with standard deviation
\sigma /4, and the prior parameters \vec{}\pi we initialized such that p (sh = 0) = (H - 1) /H , and
p (sh = 1) = 1/H . We have observed that this initialization strategy results in more stable
behavior of the algorithm during the early stages of EM iterations.

The learning schedule remained consistent with DSC without noticeable issues. That
is we let the algorithm run for 100 EM iterations using a deterministic annealing schedule
(Ueda and Nakano, 1998; Sahani, 1999) with T = 1 for the first 5 iterations and proceed
to linearly decreasing it to T = 0 by iteration 40. Furthermore, in order to avoid early
rejection of interesting datapoints 3 we force the algorithm to learn on all datapoints for
the first 30 iterations and then decrease the number of datapoints to | \scrM | by iteration 50,
always maintaining the datapoints with the highest value for

\sum
\vec{}s\in \scrK (n) p(\vec{}yn, \vec{}s), see Section

3.2.

In Figure 3.2 A, we see the columns of the dictionary matrix at convergence. Each
of the generative fields corresponds to a segment of the time series that is twice as
long as the corresponding datapoint. We observe that most of the activity in a filter is
gathered near the center, presumably because different views across a given filter, i.e.\bigl(
Wth,h, . . . ,Wth+Dy ,h

\bigr) T , can represent spikes at most of the different possible locations
if the spikes are centered in the generative field. Since we include temporal alignment
in the generative process we no longer see dictionary elements specializing for temporal
alignment, as we did in the DSC case, and therefore the “presence” variable \vec{}s is time-
invariant. Similar, results were produced by (Henze et al., 2000), however, as in standard
spike sorting pipelines (Rey et al., 2015) they use thresholding to identify spike events.
We expect a time-invariant representation for the presence of the spike to be much better at
spike sorting than features extracted by other methods. Figure 3.2 C shows the evolution
of the standard deviation of the noise model, \sigma , compared to the total standard deviation
of the original signal. We see that the standard deviation takes a long time to converge,
especially when compared to DSC, however one must note that the posterior space in the
iDSC algorithm is much larger than DSC and our approximation reduces it to a search
space with comparable efficiency. Figure 3.2 D shows the crowdedness, i.e. H\pi 1, which
represents the average number of generative fields that contribute to generate a datapoint.
The prior is also quite slow to converge and seems to remain stable generally around 1
suggesting that there are not many overlapping neurons, i.e. neurons firing at the same
time.

3spikes can be fairly rare events so the dictionary elements can develop to non spike features early on and
the algorithm might cut out datapoints containing a spike

48

3.3. Numerical Experiments

W1 W2 W3 W4 W5 W6 W7 W8

W9 W10

Dictionary Elements

Noise Model Std. Crowdedness

0 20 40 60 80 100
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

crowdedness

0 20 40 60 80 100
8

10

12

14

16

18

20

22

model

orig

Iteration Iteration

C. D.

A.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
−200

−150

−100

−50

0

50

100

W5
B.

Figure 3.2.: A.The columns of the W matrix after we finished learning with the iDSC al-
gorithm. Notice that the repetitive patterns along the time axis that we saw
in DSC are missing. B. Here we show magnified copy of filter 5, the axes
are consistent across filters the x-axis represent time in milliseconds and the
y-axis recorded potential millivolt. C. The evolution of the standard deviation
of the noise model (solid line) over EM iteration next to the standard devi-
ation of the original signal (dashed line). The standard deviation decreases
however it seems to take longer to converge than in the DSC case. D. Crowd-
edness over EM iterations. The crowdedness is the average number of active
generative fields per data point.

As in section 2.3.3, we use the reconstruction of the signal, see Figure (3.3), to evaluate

49

3. Time-Invariant Discrete Sparse Coding

how well we fit the data. In this case, we do not use overlapping datapoints so recon-
struction is a simple matter of identifying the latent variables \vec{}t\ast , and \vec{}s\ast that maximize
the posterior p

\bigl(
\vec{}s,\vec{}t | \vec{}y(n),\Theta

\bigr)
and use the mean of the noise model to reconstruct a dat-

apoint, i.e. \^\vec{}y(n) = f
\bigl(
W,\vec{}t\ast

\bigr)
\vec{}s\ast . In Figure 3.3 A, you can see the reconstructed signal

as a sequence of reconstructed datapoints (red line), separated by the vertical black line,
plotted on top of the original extra-cellular signal (blue line) (filtered with a band-pass
filter between 400Hz and 4kHz). In Figures 3.3 B.1-10, we see the contribution for the
reconstruction of each individual generative field, i.e. we reconstructed the signal us-
ing \^\vec{}y(n) = f

\bigl(
W,\vec{}t\ast

\bigr)
h
s\ast h for each segment. There we see that the three most prominent

spikes are separated cleanly by neurons 10, and 5 (also 2 contributes but with a smaller
amplitude). This behavior suggests that the iDSC algorithm is capable of unsupervised
separation across firing neurons that stimulate an electrode. Separating spiking neurons
using a single algorithm from signal to neural coding is a significant improvement for
the typical spike sorting task (e.g. compare Rey et al., 2015) A significant feature of
the iDSC generative model, apart from the temporal invariance, is the ability to explain
multiple overlapping neurons. For instance, in Figure (3.3) B.4, neuron 4 appears to be a
third neuron that fires simultaneously with 5, and 10 at different times. Neurons 1, 7, and
9 have much smaller amplitude and fire more frequently. A possible assumption for the
behavior low amplitude dictionary elements would be that they represent firing neurons
that are fairly distant from the electrode.

A common way for spike sorting systems to identify spikes is to threshold the filtered
signal at a value selected in a rather ad hoc way. A popular threshold in the literature is
5 \times \sigma orig, where \sigma orig is the standard deviation of the filtered signal (see e.g. Quiroga
et al., 2004), as exceeding that threshold would imply that this recording is a non-Gaussian
event. In Figure 3.4 B, we show the difference between the reconstructed time series and
the original recording and the result is well bellow the 5\times \sigma threshold. Therefore, by stan-
dard community criteria, we do very well at extracting the non-Gaussian events (spikes).
One should note at this point that some of the features we identify have a maximum am-
plitude below this threshold suggesting that typical spike sorting systems would probably
neglect them. The iDSC algorithm does not require subjective criteria for spike identifi-
cation since the latent variables \vec{}t can localize the spike with very high accuracy. In Figure
3.4 D, for instance, we represent the activation of neuron 5 with a black vertical line at
the center point of the generative field as it is aligned with the detected spike. In Figure
3.4 C, we see the intra-cellular recording of a neuron that is in a close distance with the
extra-cellular electrode (for details see Henze et al., 2000). Note that only two spikes
belong to the targeted neuron. When comparing Figures 3.4 C and D we find that neuron
5 perfectly predicts the spiking activity of the neuron of the intra-cellular recording for
this part of the recording.

50

3.3. Numerical Experiments

6300 6320 6340 6360 6380 6400

−300

−200

−100

0

100

200

m
V

[4
00

-4
00

0]
H

z

Original and Reconstructed SignalA.
Original EC
Reconstruction EC

6300 6320 6340 6360 6380 6400

−200

−100

0

100

200B.1 W1

6300 6320 6340 6360 6380 6400

−200

−100

0

100

200B.2 W2

6300 6320 6340 6360 6380 6400

−200

−100

0

100

200B.3 W3

6300 6320 6340 6360 6380 6400

−200

−100

0

100

200B.4 W4

6300 6320 6340 6360 6380 6400

−200

−100

0

100

200B.5 W5

6300 6320 6340 6360 6380 6400

−200

−100

0

100

200B.6 W6

6300 6320 6340 6360 6380 6400

−200

−100

0

100

200B.7 W7

6300 6320 6340 6360 6380 6400

−200

−100

0

100

200B.8 W8

6300 6320 6340 6360 6380 6400

−200

−100

0

100

200B.9 W9

6300 6320 6340 6360 6380 6400

ms

−200

−100

0

100

200B.10 W10

Figure 3.3.: A Reconstruction results of an EC recording. B.1-10 Decomposition of the
signal as in a set of dictionary elements. The reconstructed signal in Figure A
is the sum of these plots. Notice how clearly W5, and W10 separate the spikes
- W5 seems to represent the target neuron. Also notice , there high activity of
neuron with of low amplitudes.

51

3. Time-Invariant Discrete Sparse Coding

6300 6320 6340 6360 6380 6400

−300

−200

−100

0

100

200

m
V

[4
00

-4
00

0]
H

z

Original and Reconstructed signalA.
Original EC
Reconstruction EC
5× σorig

5× σmodel

6300 6320 6340 6360 6380 6400

−300

−200

−100

0

100

200

Difference Reconstruction-OriginalB.
difference
5× σmodel

σmodel

6300 6320 6340 6360 6380 6400

−200

−100

0

100

200

300

intra-cellular (IC)C.
IC

6300 6320 6340 6360 6380 6400
ms

0.0

0.2

0.4

0.6

0.8

1.0 Spike EventD.

Figure 3.4.: A Reconstruction results of an EC recording. B The Difference between the
reconstructed and the original signal. C Time-aligned IC recording - only two
of the three clear spikes in A correspond to a spike from the targeted neuron.
D The activation coefficient for dictionary element W5 is highly correlated
with the spiking activity of the target neuron.

52

3.3. Numerical Experiments

3.3.2. Audio Data of Human Speech

Human speech can also be considered as a sequence of discrete events (phonemes, sy-
lables, words etc.) that generate a continuous signal with a particular temporal structure.
Identifying time-invariant structures in speech may very well provide interesting insights
on speech encoding similar to the ones we saw for spiking neurons. We, therefore, applied
the iDSC algorithm to the same audio data as in 2.3.4 to study the effect of an explicit time
representation to audio encoding. We used the TIMIT database (Garofolo et al., 1993) to
sequentially extract N = 100 000 datapoints \vec{}y(n) in the form of D = 60-dimensional
consecutive waveforms. We used H = 60 hidden random variables to describe the data
under the DSC generative model with a configuration \Phi = \{ - 2, - 1, 0, 1, 2\} .

For the training, the scale of the noise model \sigma was initialized as the average standard
deviation of each observed variable. We initialize each column of the dictionary matrix
W \in \BbbR D\times H using the mean datapoint plus a mean free Gaussian noise. The prior param-
eter \vec{}\pi was initialized such that p (sh = 0) = (H - 1) /H , and p (sh = 1) = 1/H .

We executed the DSC algorithm for 200 iterations following a deterministic annealing
schedule described in (Ueda and Nakano, 1998; Sahani, 1999) with the annealing param-
eter starting at T = 10 and decaying it linearly to 0 by iteration 50. We also avoided
datapoint cutting until iteration 20 and then proceeded to linearly decrease the datapoints
to | M | by iteration 80 as per the algorithm description in section 3.2. Furthermore, we
add a Gaussian noise to the parameters W with a scale of 0.1 for the first 20 iterations
and proceed to linearly decrease it to 0(no noise) by iteration 50. We find that adding
noise to the dictionary elements enables us to learn more dictionary elements with high
frequency and avoids local optima in the form of filters with 0 values. Such local optima
arise in some cases when the preselection process of the iDSC algorithm excludes some
dictionary elements repeatedly.

The dictionary after learning Figure 3.5 A. resembles wavelet-like filters of multiple
frequencies. Contrary to the DSC case (Figure 2.9) were we saw localized structures
with different temporal alignments most of the filters are centered. Thereby, verifying the
observation that DSC dictionary elements are trying to account for temporal shifts. Hav-
ing separated the task of proper alignment of the features iDSC provides a time-invariant
representation that could be used in various auditory tasks, such as speech recognition.
The standard deviation of the noise model in Figure 3.5 A., significantly decreases after
learning to less than half of the standard deviation of the original signal. However, after
convergence it remains comparable to the DSC. One should note though that the DSC
experiment on audio data had a larger dictionary making such a comparison less reliable
for model comparison. The prior at convergence shows an average activation similar to
the one from the DSC case, about 0.6 dictionary elements per datapoint. However, one
should take into account that there are a lot of quiet segments in the data that could be
biasing this measurement towards a lower value than necessary for speech encoding.

53

3. Time-Invariant Discrete Sparse Coding

W1 W2 W3 W4 W5 W6 W7 W8

W9 W10 W11 W12 W13 W14 W15 W16

W17 W18 W19 W20 W21 W22 W23 W24

W25 W26 W27 W28 W29 W30 W31 W32

W33 W34 W35 W36 W37 W38 W39 W40

W41 W42 W43 W44 W45 W46 W47 W48

W49 W50 W51 W52 W53 W54 W55 W56

W57 W58 W59 W60

0 50 100 150 200
0.005

0.000

0.005

0.010

0.015

0.020

0.025 model

orig

Noise Model Std. Prior

stateIteration

Dictionary ElementsA.

B. C.

Figure 3.5.: A. Columns of dictionary matrix, W , after convergence of the algorithm.
Notice that most of the activity is gathered at the center of the filter unlike the
DSC case. B. The development of the standard deviation of the noise model
per iteration of the iDSC algorithm. C. The development of the average acti-
vation of the dictionary elements per iteration.

54

3.4. Discussion

Early on in the development of the prior we can also see very low activation values for
the dictionary elements, a behavior we attribute to the annealing scheme. As we specified
in our learning schedule, for the first 50 iterations we introduce some noise to the variables
W . We do that to make sure that some patterns that appear frequently in the data will not
dominate the dictionary during the early stages of the algorithm and leave the rest of the
dictionary unused. This behavior is observed in some datasets and is considered to be a
local optimum because it limits the expressiveness of the iDSC data model and results
in lower values for truncated likelihood. However, adding a very high variance noise
can move the filters very far away from the optimal value and in order to compensate
the algorithm recovers by reducing the filters to very low values. When the filters of the
iDSC model have low, approximately 0, values the effect of the generative process in
describing the data is minimal so the latent variables, \vec{}s, with the highest posterior are
the zero vector, thereby, pushing the prior to low values. This can break the algorithm
since p (sh = 0) = 1 means that no generative fields are ever considered by the model.
Therefore, we have observed that adding a low variance Gaussian noise to the parameters
can help avoid local optima but adding very high variance noise can push the algorithm
towards trivial solutions.

Similarly to the neural data analysis section 2.3.3, we used the reconstruction of a time
series segment to evaluate how well we were able to fit the data. In Figure 3.6 A, we can
see the reconstruction (red line) of the original waveform (blue line). The decomposition
of the reconstruction can be seen in the following to subplots B, C, D over 3 consecutive
datapoints n - 1, n, n + 1 respectively. The vertical lines are aligned in time across the
four subplots and they represent the time limits for the reconstructed patches

3.4. Discussion

We presented a sparse coding algorithm that learns how to separate the presence of a fea-
ture from its scale and temporal alignment. As in the Discrete Sparse Coding case, we
were able to learn representations invariant to a set of discrete scaling effects. That allows
us to learn a prior distribution that is not constrained by the typical functional constraints
of most sparse coding priors. Furthermore, in this chapter we introduce a variable respon-
sible for one dimensional translations of the data that improves the performance of the
algorithm significantly when dealing with data that contain a temporal component. We
were able to train the model by slightly modifying the truncated algorithm described in
section 2 to take into account the additional variable (similarly to Dai et al., 2013, but
using a linear SC model and one dimensional shifts). This extension maintains the proper-
ties of the algorithm in chapter 2 like learning the prior parameters and the variance of the
noise model as well as a dictionary matrix for the data. However, the learned dictionaries
are now better able to specialize on the profile of the spike rather than the timing.

55

3. Time-Invariant Discrete Sparse Coding

2070 2080 2090 2100 2110 2120

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3 Original
Reconstruction

2070 2080 2090 2100 2110 2120

W1

W2

W3

W4

W5

W6

W7

W8

W9

W10

W11

W12

W13

W14

W15

W16

W17

W18

W19

W20

W21

W22

W23

W24

W25

W26

W27

W28

W29

W30

W31

W32

W33

W34

W35

W36

W37

W38

W39

W40

W41

W42

W43

W44

W45

W46

W47

W48

W49

W50

W51

W52

W53

W54

W55

W56

W57

W58

W59

W60

Figure 3.6.: A Reconstruction results of an audio waveform. B Dictionary elements used
to reconstruct the signal. The time-axis are aligned - the plots represent the
contribution of each hidden unit from W1 to W60 (top to bottom)

56

3.4. Discussion

We applied our algorithm to sequences of extra-cellular recordings from spiking neu-
rons. The results showed that our algorithm can successfully separate spikes in a fully
unsupervised manner. With the exception of passing the signal through a band-pass filter
it doesn’t require any preprocessing of the data that is typical to spike sorting algorithms.
Typical spike sorting algorithms require multiple processing steps like, i.e. spike identi-
fication, feature extraction, and clustering (see for instance Quiroga et al., 2004; Harris
et al., 2000; Lewicki, 1998, and many others). Our algorithm is effectively addressing
all these steps under a single objective. Apart from the separation of any potential sci-
entific bias that might interfere with the spike sorting process our algorithm addresses
issues entirely neglected by such spike sorting pipelines such as overlapping spikes or,
more importantly, the non-Gaussian description of the spike which is typically handled
via an ad-hoc thresholding in a feature space. In the case where discrete latents are used
it is typically based on a mixture model (Lewicki, 1998; Carlson et al., 2014) meaning
that the potential for overlapping spikes is largely ignored. To the knowledge of the au-
thor the only paper that models overlapping spikes as well as temporal alignment for
spikes is Pillow et al. (2013). In this work, the authors introduce a binary encoding to the
waveform quite similar to the one present here, however, their algorithm uses a “binary
pursuit” algorithm to identify the spiking neurons. Using this type of heuristic for the
encoding limits the potential for inference in the latent space to search for the contribu-
tion of individual spikes to the objective rather than combinations of spikes (explaining
away). Another drawback for that approach is the fact that it relies on an ad-hoc prior
for the activation of a spike which we are able to learn through a more detailed posterior
representation.

Our application on audio data extracts information about the prior and the noise that
are similar to the DSC algorithm. The dictionaries are slightly more localized and they
often have non-symmetric structure suggesting that they separate sounds with a distinct
temporal characteristics, for instance, the beginning or the end of a phoneme. Further-
more, we are able to learn a lot of high frequency elements that were missing in the DSC
case. The similarity between the learned parameters in the DSC and iDSC algorithms
suggests that the audio data are not strongly dependent on temporal alignment with the
exception perhaps of changes in phase of the dictionary elements. This observation could
potentially be interesting in extending the work either by introducing more information
in the design of the temporal alignment variables or taking into consideration models that
separate phase and amplitude in the latent space (Turner and Sahani, 2011).

57

4. Learning Transformations with
Neural Networks

4.1. Introduction

So far we have seen models that focus on learning a constrained set of transformations of
the data, i.e. scaling, and temporal shifts. For the rest of this work, we will look at models
that identify a more general set of transformations for the data. In this chapter we will
discuss approaches based on neural networks applied on learning image transformations.
Applications of such research directions can be found in any task that requires a level of
abstraction higher than image content, such as action recognition and robotics (Montesano
et al., 2010), as well as providing a better insight for the function of perceptual systems
(Tenenbaum and Freeman, 2000; Cadieu and Olshausen, 2012).

Neural network architectures that generate invariant representations using multiplica-
tive interactions of neurons have been proposed since the 80s (Hinton, 1981; Hinton and
Lang, 1985; Anderson and Van Essen, 1987). Implementations of such architectures have
appeared in image recognition systems (see for instance Wiskott et al., 1997) or for learn-
ing image correspondences (Lücke et al., 2008). For transformation learning, neural net-
work implementations have been focusing on stacked architectures with multiplicative
interactions in intermediate layers of to achieve gating in feature representation. This ap-
proach has been successful in learning transformation representations (Memisevic, 2011;
Alain and Olivier, 2013), however, these architectures are typically constrained to learn a
minimal number of transformation representations. Furthermore, earlier proposals for ex-
tracting intermediate level features implied using a single layer of fully connected weights
(Hinton, 1981; Olshausen et al., 1993; Memisevic and Hinton, 2007) to find adaptive
mappings between images or image and memory model. This approach seems to have a
greater computational cost, but it offers a more intuitive encoding for the transformations
and one would expect it to extract richer and more versatile transformation representa-
tions.

In Memisevic and Exarchakis (2013), we presented an algorithm that relates image
sequences based on factored approaches. In that paper we introduced an experiment sim-
ilar to the one that we include at the end of this chapter. The algorithm was proposed
by Roland Memisevic while the implementation and testing was primarily performed by
myself. The methods described in that paper considerably differ to what is described in

59

4. Learning Transformations with Neural Networks

this chapter. Primarily, we are discussing a model that works on a pair of images and
takes into account the full range products in the feature space while in Memisevic and
Exarchakis (2013) we discussed a model that works on sequences of images of arbitrary
length that use the squared responses of features for the encoding of the transformations.

4.2. Background on Transformation Learning

Consider two variables \vec{}y \in \BbbR D and \vec{}x \in \BbbR D related by a transformation T \in \BbbR D\times D.
The transformation in T is usually modeled as the sum of T =

\sum
h Lkkh of a set of

transformations, Lk \in \BbbR D\times D, where the variable kh is considered as a gating variable.
This architecture has been used to relate variables \vec{}x and \vec{}y in a multitude of modeling
settings. For instance, \vec{}x and \vec{}y take the form of visual stimulus and memory in Olshausen
et al. (1993). In Tenenbaum and Freeman (2000), \vec{}k and \vec{}x take the form of style and
content in an image.

In this work we will focus on relating two images with the same content but a varying
viewpoint. Memisevic and Hinton (2007), with the same goal, present an autoencoder in
which the variable \vec{}h was identified as the transformation that relates \vec{}x and \vec{}y the most as
hk =

\sum
ij Wkijxiyj . Using tied weights, the dictionary for the decoder was the same as

for the encoder, i.e. the transformation matrix T between \vec{}x and \vec{}y was Tij =
\sum

k Wkijhk.
This model for transformations performed well in producing analogies of transformations
of images that had global effect.

A potential issue with the autoencoder described in Memisevic and Hinton (2007) is
the fact that the parameters scale cubicly with size of the observations requiring more
data. To avoid this a number of approaches that factor the tensor W into matrices were
introduced (see for instance Memisevic and Hinton, 2010; Memisevic, 2013; Alain and
Olivier, 2013; Memisevic and Exarchakis, 2013). Typically, factored methods project
the data in a feature space that serves as a distributed representation of a datapoint, i.e.
each dimension carries some information about the entire datapoint. In order to encode
the transformation, factored approaches use the multiplicative interactions in the feature
space instead of the observed space directly. Then instead of taking all products across
the variables in feature space they only take a subset of the products. This reduces the
number of parameters to scale quadratically with respect to dimensionality of the input
while maintaining good transformation encoding properties. It is noteworthy that factored
approaches show very good results for more complex transformations in image space
(Memisevic and Exarchakis, 2013). Presumably, this improvement is due to the fact that
multiplicative interactions between datapoints where taken in a feature space which was
a distributed representation

Although, factored representations were shown to be sufficient for non-trivial tasks we
feel that it would be an oversight not to study an autoencoder that utilizes multiplicative
interactions across feature representations for transformation encoding without studying

60

4.3. Deep Gated Autoencoder

GAE FGAE DGAE

Figure 4.1.: The Gated Autoencoder (left) has all to all connections between the
observations and the encoding variables. The Factored Gated Autoen-
coder (center) project the data in a feature space uses a subspace of
the feature space products to generate the encoding. The Deep Gated
Autoencoder (right) projects the input on a feature space and uses all
products of the feature space to encoder the relationship..

the full range of products in the feature space. In this way we would be capable of de-
scribing a much wider range of transformations and in fact we should be able to encode
transformations in very heterogeneous spaces like image-action or image-word.

4.3. Deep Gated Autoencoder

Let the dataset consist of pairs of observations \vec{}x \in \BbbR Dx and \vec{}y \in \BbbR Dy related by some
transformation. We seek a representation of the data in which each dimension carries
information about the entire image. To achieve that we use an affine transformation on
the data:

\vec{}fx = U\vec{}x+\vec{}bx (4.1)
\vec{}f y = V \vec{}y +\vec{}by (4.2)

where U \in \BbbR Kx\times Dx , and V \in \BbbR Ky\times Dy are the filtering matrices that we use to achieve
an appropriate representation and \vec{}bx \in \BbbR Kx , and \vec{}by \in \BbbR Ky are vectors representing an
additive bias. We combine \vec{}fx, and \vec{}fy using a bilinear tensor W \in \BbbR H\times Kx\times Ky to get a

61

4. Learning Transformations with Neural Networks

transformation encoding, \vec{}k as:

kh = g

\Biggl(\sum
ij

Whijf
x
i f

y
j

\Biggr)
(4.3)

where g is a sigmoid function. Notice that if we think of W as several matrices stacked
together along the dimension indexed by h then equation 4.3 will result in a higher value
for the matrix that better connects \vec{}fx and \vec{}f y.

The decoding stage of our algorithm uses the transformation representation \vec{}k and one
of the features representations \vec{}fx, or \vec{}f y to reconstruct the other. Using the same, tied
weights for both encoding and decoding that is:

\^fx
i =

\sum
hj

Whijkhf
y
j (4.4)

\^f y
j =

\sum
hu

Whijkhf
x
i (4.5)

Once we have a feature representation, we reconstruct the data using the same filters as in
the encoding phase:

\^\vec{}x = UT \^\vec{}fx + \vec{}cx (4.6)
\^\vec{}y = V T \^\vec{}f y + \vec{}cy (4.7)

Our learning algorithm seeks the parameters \Theta = \{ W,U, V, bx, by, cx, cy\} that optimize
the objective of our algorithm. In a typical autoencoder neural network the objective is
the reconstruction error, i.e.:

Cx = \| \vec{}x - \^\vec{}x\| 22 (4.8)

or
Cy = \| \vec{}y - \^\vec{}y\| 22 (4.9)

depending on whether we want to learn transformations from \vec{}y to \vec{}x, or \vec{}y to \vec{}x respectively.
In some cases, we might want to know how to learn bidirectional transformations in which
case a cost like

C = Cx + Cy (4.10)

might be more appropriate. One must be careful however because in the case of tied
weights, i.e. using the same parameters for encoding and decoding, the learned trans-
formations are urged to be orthogonal and depending on the application that may not
always be desirable. We call the model described in equations 4.1 to 4.10 Deep Gated
Autoencoder (DGAE)

In section 1.2 we discussed the similarities between autoencoders and probabilistic

62

4.4. Experiments

models. In the case of the Deep Gated Autoencoder the negative of the cost function is
proportional to the logarithm of the conditional probabilities of the variables

\mathrm{l}\mathrm{o}\mathrm{g} p (\vec{}x| \vec{}y,\Theta) \propto - Cx (4.11)

\mathrm{l}\mathrm{o}\mathrm{g} p (\vec{}y| \vec{}x,\Theta) \propto - Cy (4.12)

assuming we use a Gaussian noise model with an identity covariance matrix. Therefore,
the cost function in Equation 4.10 corresponds to the product of the two conditonal dis-
tributions.

Training the model, or maximizing the likelihood as described in section 1.2, can be
achieved through stochastic gradient descent in the space spanned by the parameters \Theta
(backpropagation).

4.4. Experiments

4.4.1. Image analogies

We use the NORB dataset (see LeCun et al., 2004) to create pairs of images of an object
in different pose by varying the elevation and the azimuth of the camera while maintain-
ing the same lightning conditions (a similar dataset was introduced in Memisevic and
Exarchakis, 2013). The elevations vary by changing the camera viewing angle by either
 - 10, - 5, 0, 5, 10 degrees, and the azimuth changes by either - 20, 0, 20 degrees. That
creates a total of 15 different transformations in a 3 dimensional space. In this way we
extract N = 304200 image pairs of dimensionality 96 \times 96, i.e. Dx = Dy = 9216.
The number of the observed dimensions is too large for our algorithm to work efficiently.
We use Principle Component Analysis (PCA) (introduced in Hotelling, 1933), (also see
Hyvarinen et al., 2009; Bishop, 2006) to reduce the dimensionality of the images while
maintaining 99\% of the variance of the data. This form of preprocessing reduced the di-
mensions to Dx = Dy = 666. For this experiment we use a feature space with the same
dimensionality as the input Kx = Ky = 666. Even though we know that we only have 15
different transformation we can not be certain that we will achieve perfect separation of
the used transformation. In an attempt to achieve a better separation of distinct transfor-
mation we use encodings with more dimensions than the transformations in our data, i.e.
H = 100.

We train the model on the entire dataset using stochastic gradient descent for 1000
iterations over the full dataset using randomly selected subsets of the data (batches) of
size 100. The update rules have been modified to include a momentum term as in Bengio
et al. (2013) to enhance gradient values when we are close to the optimum and the gradient
takes small values. Furthermore, the update rules in Bengio et al. (2013) also include a
manipulation of the gradient similar to the one in Nesterov et al. (2007) in which they

63

4. Learning Transformations with Neural Networks

attempt to estimate the value of the gradient at the point of the updated parameters and
correct accordingly. The value of the momentum is set to m = 0.9 and the learning rate is
set to \epsilon = 10 - 5. We also implement a dropout regularization Hinton et al. (2012) scheme
to find more robust encoding of the transformations. Dropout amounts to multiplying the
transformation encoding \vec{}k with samples from a Bernoulli distribution. Setting some of the
dimensions of the encoding to zero urges the tensor W to use the sum of multiple matrices
Wh to encode a transformation. This has no significant effect on the results presented here
but it has been reported (for instance here Baldi and Sadowski, 2013) that it increases
separability in the features space and typically the performance in classification tasks.

In order to generate analogies of image transformations we use two images to encode a
transformation using equations 4.1 to 4.3 that produce a representation \vec{}k for that transfor-
mation. We use \vec{}k and a feature representation, \vec{}f x of a new (target) image and generate a
reconstruction \^\vec{}y of the target image transformed in the same manner as the two original
images that we used to get \vec{}k. If we are successful then the reconstruction will not carry
any content information about the original images but only of the target image meaning
that \vec{}k is an encoding of the transformation between images and not the content.

In figure 4.2, we demonstrate the ability of our algorithm to identify transformations
by producing analogies of the same transformations to a different object (target). We use
6 examples of typical transformations that have been selected to better demonstrate the
potential of the algorithm. In each of the sub-figures 4.2 A-F we present a pair of images
of the same object (the two top images) that define a transformation \vec{}k. The values in each
dimension of \vec{}k are plotted in the bottom bar-plot. Having the transformation encoding \vec{}k
we take an image of a new object (bottom left image) and apply the transformation. This
process generates the image seen in the bottom right which is now transformed in manner
analogous to the top two images. From the ensemble of image pairs we can observe that
the algorithm is able to separate image transformations from image content successfully
in many cases.

In figure 4.3, we present some failed examples of the transformations. In figure 4.3 A
we have an example where image content of the top images (a car) seems to be present in
the reconstruction. This behavior suggests that separability is not perfect and on occasion
the transformation can focus on the object in a variety of orientations. In figure 4.3 B
we see an example were image structure seems to be lost almost entirely and the result
resembles a low frequency noise.

In figure 4.4, we present examples of image analogies were the transformation was
particularly good. In the case of figure 4.4 A, we see that the target object is the same as
in the seed image. It also has the same pose and lightning conditions and in that case it
seems that the transformation is inferred almost perfectly. In the case of figure 4.4 B we
see an image pair that is not transformed, i.e. it defines the identity transformation. It is
common for our algorithm to infer the identity transformation correctly in most cases.

64

4.4. Experiments

A. B.

C. D.

E. F.

Figure 4.2.: Examples of image analogies. Each of the figures A-B shows a pair of images
(top two images) that define an image transformation. The encoding of the
image transformation is plotted in the bar plot at the bottom. The bottom left
image is then used as a target for the transformation and produces the bottom
right image. These examples show that the algorithm can extract an encoding
of the transformation that is invariant of the form content in the image

65

4. Learning Transformations with Neural Networks

A. B.

Figure 4.3.: Failed examples of image analogies: A shows an example were separating
the transformation from the content of the image was not successful and the
you can see features of the car in the top two images in the reconstructed
image. B shows an example were separating the transformation completely
distorts the image

A. G.

Figure 4.4.: Analogy examples that were unusually good. A shows an example in which
the target was the same object in the same pose and lighting condition as the
corresponding image used to define the transformation. Under these condi-
tions we do very well at reconstructing the image. B shows an example in
which the transformation was the identity transformation. Empirical results
show that the identity transformation is easily learned.

66

4.5. Discussion

4.5. Discussion
In this chapter we presented a new algorithm that learns transformations based on neural
networks with gating connections. Earlier work (Memisevic and Hinton, 2007; Memise-
vic, 2013) has shown that learning image transformations is possible but it also suggests
that factored methods are better capable of extracting local and more complex transfor-
mations than the standard gated Autoencoder. This is probably due to the fact that the
factored gated autoencoder takes into account multiplicative interactions in feature space
rather than the observed variables directly. Here we define an autoencoder that encodes
transformation in a manner similar to GAE but instead of working with observations di-
rectly it seeks an alternative representation of the input first. To evaluate the potential of
our algorithm to extract image transformations we applied it on a task of producing analo-
gies of image transformations similar to the one in Memisevic and Exarchakis (2013).
The results show that we are able to separate image transformations from the image con-
tent and in fact the transformation we learn appear to be more complex than the ones
learned with the standard gated autoencoder (Memisevic and Hinton, 2007). Although,
our method has a higher representational capacity than the factored gated autoencoder
we have not been able to show considerable performance improvement, however to ex-
amine the full range of gating connections we need to scale the number of parameters
cubicly with respect to the input while the parameters of the factored gated autoencoder
only scale quadratically. That requires us to use more datapoints for training and longer
training times which might be a reason for the competitive results of the factored method.

67

5. Bilinear Dynamical Systems

5.1. Introduction

The Deep Gated Autoencoder we described in the last chapter is efficient in high dimen-
sions and has the demonstrated ability to extract a variety of complex transformations.
However, as we have seen in its probabilistic formulation the encoding of these trans-
formations is deterministically defined from the data. That constrains the study of the
representation to happen on an example by example basis. Having a probabilistic model
that defines an appropriate prior for the latent variables would enable us to sample from
the prior and draw a more clear picture on the function of the algorithm. Added to that,
we have the usual benefits of a probabilistic representation of a variable, e.g. using the
posterior of the encoding given we have a model of the uncertainty of our representation.
Another, limitation of DGAE is that it is defined to operate on pairs of datapoints related
by certain transformation. Typically, a task that requires learning transformations from
data would involve a sequence of more than a pair of datapoints.

In this chapter, we define a probabilistic model that can be fitted to sequential data. We
intend to achieve an algorithm that separates static from dynamic content in a sequence of
observations. We do that using a Bilinear State Space Model (BSSM) in which the state
transitions change over time. This model adds to the work of the previous chapter in two
ways, we have a definition of a prior on the variables that encode transformations and we
are able to apply it iteratively on a sequence of observations thus extending the model to
work on more than pairs of images.

Recurrent neural networks (Michalski et al., 2014) and other methods (Memisevic and
Exarchakis, 2013), extending the gated autoencoder networks (Memisevic, 2013) dis-
cussed earlier, have the potential to work on arbitrary length sequences, however, these
models maintain a deterministic encoding of the transformations. The work presented in
this chapter bears more similarity to typical state space models (see for instance Shumway
and Stoffer, 2010; Bar-Shalom and Li, 1993). Similar work has been attempted with the
use of graphical models (for instance Ghahramani and Hinton, 2000; Bar-Shalom and Li,
1993), and other non-linear dynamical systems (Luttinen et al., 2014). Our work is most
similar to the one in (Luttinen et al., 2014) with the exception that we assume indepen-
dence in the “switching” variables and that they use a variational Bayes approximation for
the parameter updates. The main difference with (Ghahramani and Hinton, 2000) is that
we use “switch” variables only for the transformations and not the generative filters. The

69

5. Bilinear Dynamical Systems

model presented in this chapter is therefore a simplified version of earlier work. However,
we support our modeling choices on the fact that the afore mentioned algorithms intro-
duced complexity that is potentially unnecessary for the tasks that we address. We will
refer to these models as hybrid state space networks since they typically include continu-
ous variables to represent the state and discrete variables for switching.

5.2. Mathematical Description

Let the data \bfY be a set of N independent sequences of observations \vec{}y
(n)
t \in \BbbR D , with

n = 1, . . . , n, and t = 1, . . . , \tau . We propose a dynamical system that describes the data
as:

\vec{}yt = W\vec{}zt + ut (5.1)

\vec{}zt = f
\Bigl(
\vec{}zt - 1, \vec{}k

\Bigr)
+ vt (5.2)

where f is a bilinear map, and \vec{}k \in \{ 0, 1\} C , with
\bigm| \bigm| \bigm| \vec{}k\bigm| \bigm| \bigm| = 1, is a “switching” variable that

identifies the linear transformation from state \vec{}zt - 1 to \vec{}zt. Therefore, we may sometimes
write f

\Bigl(
\vec{}zt, \vec{}k

\Bigr)
=
\sum

icAz
i
t k

c
t , or f

\Bigl(
\vec{}zt, \vec{}k

\Bigr)
= A(k)\vec{}zt where A(k) \in \BbbR H\times H . ut and vt are

stochastic variables representing mean-free Gaussian noise with covariance matrices \Sigma ,
and \Gamma respectively. The recursive rule requires a prior at time t = 1 which we set to be a
Gaussian distribution with a mean \vec{}\mu and a covariance matrix R.

Figure 5.1.: Dependency Graph of the Generative Model.

Here we propose an algorithm that efficiently learns maximum likelihood parameters
\Theta \ast = \{ W \ast ,\Sigma \ast , A\ast ,\Gamma \ast , \vec{}\pi \ast , \mu \ast , R\ast \} for the generative model. The likelihood of the model

70

5.2. Mathematical Description

can be written in terms of the latent variables as:

p (\bfY) =
\prod
n

p
\bigl(
\vec{}y(n)
\bigr)
=
\prod
n

\int
\vec{}z

\sum
\vec{}k

p
\Bigl(
\vec{}y(n), \vec{}z,\vec{}k

\Bigr)
d\vec{}z (5.3)

since the data are independent over n all computations in the log-likelihood over n are
reduced to summations. We will show the results for N = 1 sequences but scaling to
anything higher would be trivial since the sequences are assumed to be independent. One
thing to note about our model is that since we assume that state changes from \vec{}zt - 1 to \vec{}zt
can happen in C different ways with a certain probability then at state \vec{}zt is modeled as a
mixture of Gaussians

\sum
c p
\Bigl(
\vec{}zt| \vec{}zt - 1, \vec{}k\Theta

\Bigr)
p
\Bigl(
\vec{}k| \Theta

\Bigr)
. Following the recursion at time \tau we

would have a mixture with C\tau components which is easily intractable. For that reason
we assume that at each time point the mixture of Gaussians merges to a single Gaussian.
To find the maximum likelihood parameters we will use an EM algorithm modified for
sequential data (Baum et al., 1970). The EM algorithm requires us to define an expectation
value of the logarithm of the joint distribution of latent and observed variables:

p (\bfy , \bfz ,\bfk) =p (\mu)
\tau \prod

t=2

p
\Bigl(
\vec{}zt| \vec{}zt - 1, \vec{}k,\Theta

\Bigr)
p
\Bigl(
\vec{}k| \Theta

\Bigr) \tau \prod
t=1

p (\vec{}yt| \vec{}zt,\Theta) \leftrightarrow

\mathrm{l}\mathrm{o}\mathrm{g} p (\bfy , \bfz ,\bfk) = \mathrm{l}\mathrm{o}\mathrm{g} p (\mu)
\tau \sum

t=2

\mathrm{l}\mathrm{o}\mathrm{g} p
\Bigl(
\vec{}zt| \vec{}zt - 1, \vec{}k,\Theta

\Bigr)
p
\Bigl(
\vec{}k| \Theta

\Bigr) \tau \sum
t=1

\mathrm{l}\mathrm{o}\mathrm{g} p (\vec{}yt| \vec{}zt,\Theta) (5.4)

where we take advantage of the Markov property assumed by the generative model. With
this formulation of the joint the part of the free energy depending on \Theta forms as follows:

\scrQ (\Theta) =
\sum
n

\Biggl(
 - 1

2

\sum
t

\int
\vec{}zt

q (\vec{}zt)
\Bigl(
\mathrm{l}\mathrm{o}\mathrm{g} | 2\pi \Sigma | + (\vec{}yt - W\vec{}zt) \Sigma

 - 1 (\vec{}yt - W\vec{}zt)
T
\Bigr)
d\vec{}zt

 - 1

2

\sum
t=2

\int
\vec{}zt:t - 1

\sum
k

q (\vec{}zt:t - 1, k)
\Bigl(
\mathrm{l}\mathrm{o}\mathrm{g} | 2\pi \Gamma | +

\bigl(
\vec{}zt - A(k)\vec{}zt - 1

\bigr)
\Gamma - 1

\bigl(
\vec{}zt - A(k)\vec{}zt - 1

\bigr) T\Bigr)
d\vec{}zt:t - 1

+
\sum
t=2

\sum
k

q (k)
\sum
c

kc \mathrm{l}\mathrm{o}\mathrm{g} (\pi c)

 - 1

2

\int
\vec{}\mu

q (\vec{}z1)
\Bigl(
\mathrm{l}\mathrm{o}\mathrm{g} | 2\pi V1| + (\vec{}yt - W\vec{}z\tau 1)V

 - 1
1 (\vec{}yt - W\vec{}z\tau 1)

T
\Bigr)
d\vec{}\mu

\Biggr)
(5.5)

where q (x) = p(x| y1:\tau ,\Theta \mathrm{o}\mathrm{l}\mathrm{d}) is the posterior probability with respect to the old parame-
ters \Theta \mathrm{o}\mathrm{l}\mathrm{d}. Taking into account the linearity property of expectation values, the necessary

71

5. Bilinear Dynamical Systems

expectation values can be are identified and denoted as:

Eq [\vec{}zt] = \^zt, (5.6)

Eq

\bigl[
\vec{}zt\vec{}z

T
t

\bigr]
= Pt, (5.7)

Eq

\Bigl[
\vec{}zt\vec{}z

T
t - 1| \vec{}kt

\Bigr]
= Pt,t - 1| k, (5.8)

Eq

\Bigl[
\vec{}kt

\Bigr]
= \^kt. (5.9)

equation 5.8 is the cross-covariance between two consecutive latent variables \vec{}z and it
is necessary for learning the parameters A, and \Gamma which are relevant to the system dy-
namics. We will not infer the cross-covariance with the algorithm presented here since it
introduces a significant level of complexity to our algorithm and it is already possible to
produce substantial functionality without it. Subsequently we will not be able to propose
parameter updates for the system dynamics.

Equations 5.6 to 5.9 form the sufficient statistics for the algorithm and identifying them
is a process analogous to the E-step of the EM algorithm We can infer the sufficient
statistics by modifying the RTS smoother (Rauch, 1963; Ghahramani and Hinton, 1996)
to include multiple transformations for the dynamics of the generative process. As in the
linear case, we separate inference in two stages of recursion the forward pass, filtering,
and the backward pass, smoothing.

In the filtering stage we identify the probabilities p (\vec{}zt| \vec{}y1:t - 1), p (\vec{}zt| \vec{}y1:t), and p
\Bigl(
\vec{}kt| \vec{}y1:t

\Bigr)
which we specify by their moments

\bigl(
\^z t - 1
t , V t - 1

t

\bigr)
, (\^z t

t , V
t
t), and (\pi t

c) respectively. The
parameters of these distributions can be shown to emerge as follows,

\^z t - 1
t| k = A| k\^z

t - 1
t - 1 (5.10)

V t - 1
t| k = A| kV

t - 1
t - 1 A

T
| k + \Gamma (5.11)

\pi t
c =

p (yt| y1:t - 1, kc = 1)\pi t - 1
c\sum

c\prime p (yt| y1:t - 1, kc\prime = 1)\pi t - 1
c\prime

(5.12)

\^z t - 1
t =

\sum
c

\pi t
c\^z

t - 1
t| kc=1 (5.13)

V t - 1
t =

\sum
c

\pi t
c

\biggl(
V t - 1
t| kc=1 +

\Bigl(
\^z t - 1
t| kc=1 - \^z t - 1

t

\Bigr) \Bigl(
\^z t - 1
t| kc=1 - \^z t - 1

t

\Bigr) T\biggr)
(5.14)

Kt = V t - 1
t W T

\bigl(
\Sigma +WV t - 1

t W T
\bigr) - 1

(5.15)

\^z t
t = \^z t - 1

t +Kt

\bigl(
yt - W \^z t - 1

t

\bigr)
(5.16)

V t
t = (I - KtW)V t - 1

t (5.17)

72

5.2. Mathematical Description

where A| k is the matrix that results from multiplying \vec{}k with the tensor A, i.e.
\sum

c Acijkc.
The above equations approximate the filtering process by trying to get some information
on the appropriate transformation before we make a step towards it. In particular, equa-
tions 5.10 to 5.11 are “peeking” ahead to find which transformation is more likely to be
taken at the next step. Once the transformation is found we update the probability of the
switching variable in equation 5.12 and we use that to merge our predictions to a single
Gaussian function in equations 5.13 and 5.14 (see Lauritzen, 1996; Bar-Shalom and Li,
1993). We correct the prediction as in the typical Kalman Filter updates in equations 5.15
to 5.17.

In the smoothing stage we look for the probabilities p (\vec{}zt| \vec{}y1:\tau), and p
\Bigl(
\vec{}kt| \vec{}y1:\tau

\Bigr)
which

we specify by their moments (\^z \tau
t , V

\tau
t) and

\bigl(
\pi c| \tau
\bigr)
, respectively.

\^z \tau
t - 1| k =

\Bigl(
\^z t - 1
t - 1 + Jt - 1| k

\Bigl(
\^z \tau
t - \^z t - 1

t| k

\Bigr) \Bigr)
(5.18)

\^z \tau
t - 1 =

\sum
c

\^z\tau t - 1| kc=1\pi
\tau
c (5.19)

V \tau
t - 1| k = V t - 1

t - 1 + Jt - 1| k
\bigl(
V \tau
t - V t - 1

t

\bigr)
JT
t - 1| k (5.20)

V \tau
t - 1 =

\sum
c

\pi \tau
c

\Bigl(
V \tau
t - 1| kc=1 +

\bigl(
\^z\tau t - 1| kc=1 - \^z\tau t - 1

\bigr) \bigl(
\^z\tau t - 1| kc=1 - \^z\tau t - 1

\bigr) T\Bigr) (5.21)

where Jt - 1| k = V t - 1
t - 1 A

T
| k

\Bigl(
V t - 1
t| k

\Bigr) - 1

(5.22)

\pi \tau
c =

p (y\tau t | \^y1:\tau , kc = 1)\pi \tau - 1
c\sum

c\prime p (y
\tau
t | \^y1:\tau , kc\prime = 1)\pi \tau - 1

c\prime
(5.23)

The backward recursions are initialized with \^z\tau \tau , and V \tau
\tau respectively as obtained from the

filtering results while the prior update \pi t
c remains the same for the backward as in the final

step of the filtering.

Parameter Updates We can find the parameter updates by taking the gradient of
equation 5.5 with respect to each parameter and setting it to zero. The parameter up-
dates require the sufficient statistics in the E-step which can be expressed in terms of the
smoother equations as:

Eq [\vec{}zt] = \^z\tau t , (5.24)

Eq

\bigl[
\vec{}zt\vec{}z

T
t

\bigr]
= Pt = V \tau

t + z\tau t z
\tau T
t , (5.25)

Eq

\Bigl[
\vec{}kt

\Bigr]
= \^kt = \pi \tau

t . (5.26)

73

5. Bilinear Dynamical Systems

This process gives closed form update rules for the parameters that optimize the objective.

\^znew
1 = \^z

\tau (n)
1 (5.27)

V new
1 = V \tau

1 +
\bigm| \bigm| \^z\tau 1 - \^\=z\tau 1

\bigm| \bigm| \bigm| \bigm| \^z\tau 1 - \^\=z\tau 1
\bigm| \bigm| T (5.28)

\pi new
c =

\pi \tau
c\sum

c\prime \pi
\tau
c\prime

(5.29)

W new =

\Biggl(
\tau \sum

t=1

yt (\^z
\tau
t)

T

\Biggr) \Biggl(
\tau \sum

t=1

Pt

\Biggr) - 1

(5.30)

\Sigma new =
1

T

\sum
t

\Bigl(
yty

T
t - W \^z\tau t y

T
t - yt (\^z

\tau
t)

T W T + Pt

\Bigr)
(5.31)

For arbitrary N , we have to replace the sufficient statistics with their average over the
datapoints. Our posterior approximation at this point is not able to correctly learn the
parameter updates for the state transitions A, and \Gamma . This is potentially due to the fact that
we merge the predictions of future states to a single Gaussian and that alters the direction
of the transformations when described by the sufficient statistics. An alternative method
that could potentially solve this issue is described in Bar-Shalom and Li (1993) where the
authors present an algorithm (GPB2) for a hybrid state space model that maintains the
projections across different filters for pairs for two consecutive time-points.

5.3. Numerical Experiments
In this section we present some results that verify the algorithms capacity to identify
transformations in data. We do that by generating sequences of datapoints using the BDS
model that has varying switching variables \vec{}k over time. We show that we can infer the
model state of these sequences fairly accurately and that we are able to identify when the
dynamics change in a sequence.

5.3.1. Inference on artificially generated sequences
We generate N = 200 sequences of T = 50 observations each by drawing N samples
from the state prior p(\vec{}z; \vec{}\mu ,R) and N(T - 1) samples from the prior of the transforma-
tion and use the BDS generative model to generate artificial observations. We evaluate
our representation of the latent space by attempting to identify the latent variables that
generated each sequence. We use the forward backward algorithm described in equations
5.10 to 5.17 to identify the posterior space. We initialize the state dynamics of our model

as A| c=1 =

\biggl(
1 1
0 1

\biggr)
, and A| c=2 =

\biggl(
1 0
0 1

\biggr)
, and the state transition covariance as

74

5.3. Numerical Experiments

\Gamma =

\biggl(
0.05 0
0 0.05

\biggr)
. The dictionary W =

\biggl(
1 2
0 1

\biggr)
and the covariance of the obser-

vations \Sigma = 0.21 . The prior parameters are set to be \vec{}\pi =
\bigl(
1
3
, 2
3

\bigr) T , \^\vec{}z1 = (1, 1)T , and
\^V1 = 1 . An example of the generated data can be seen in figure 5.2 (red dotted line)
together with the ground truth state that generated the observations (blue solid line). In
the four plots of figure 5.2 we see the performance of different steps of our approximation
and the reconstruction of the results. In the top plot we see the prediction for the model
state as performed by equation 5.13. In the second plot we see the state estimate corrected
by the datapoint in the filtering process 5.16. In the third plot we see the the state estimate
of the filtering process 5.18 which is the mean of the posterior at time t with respect to
the entire dataset. Comparing the top 3 plots one notices a progressive improvement in
the state estimate on account of the additional data used for the estimate at each of these
updates. In the last plot of figure 5.2 we present the reconstruction of our data from the
posterior estimate. One notices that there is an error in the reconstruction that is due to
the noise of the model. Since, the dynamics matrix A| c=1 and the observation matrix W
push the model harder along the first dimension the noise as well as the state are greater
along the x-axis.

75

5. Bilinear Dynamical Systems

−10 0 10 20 30 40 50 60 70
0.0
0.5
1.0
1.5
2.0
2.5
3.0

~zgt

~z t−1
t

~y

−10 0 10 20 30 40 50 60 70
0.0
0.5
1.0
1.5
2.0
2.5
3.0

~zgt

~ztt

~y

−10 0 10 20 30 40 50 60 70
0.0
0.5
1.0
1.5
2.0
2.5
3.0

~zgt
~zτt

~y

−10 0 10 20 30 40 50 60 70
0.0
0.5
1.0
1.5
2.0
2.5
3.0

~zgt

~̂y

~y

Figure 5.2.: BDS state-space inference: In the above plots you see an artificially gen-
erated sequence from the BDS data model, where \vec{}y (red dotted line) are
the generated observations, and \vec{}zgt are generated state space representations.
(TOP-BOTTOM) In the first figure, we also plot the predicted state at each
time point \vec{}zt - 1

t , i.e. the mean of p (\vec{}zt| \vec{}y1:t - 1). In the second figure, we plot
the filtered state at each time point \vec{}ztt , i.e. the mean of p (\vec{}zt| \vec{}y1:t). In the third
figure, we plot the smoothened state representation at each time point \vec{}z\tau t , i.e.
the mean of p (\vec{}zt| \vec{}y1:\tau). Notice that each of them gets closer to the ground
truth since it takes more observation about the sequence into account. In the
last figure, we present the reconstruction of the observations \^\vec{}yt = W\vec{}s\tau t from
the smoothened states, i.e. the mean of p (yt| y1:\tau).

76

5.3. Numerical Experiments

0 20 40 60 80 100
Inference Accuracy - (%) correct

0

10

20

30

40

50

0 20 40 60 80 100
Inference Accuracy - (%) correct

0

10

20

30

40

50

Inferring transformations

Filtering

Smoothing

A.

B.

N
u
m

b
e
r

o
f

s
e
q
u
e
n
c
e
s

N
u
m

b
e
r

o
f

s
e
q
u
e
n
c
e
s

Figure 5.3.: BDS transition inference: In the two histograms above you see the per-
centage of correct state transitions inferred from artificial data. We used 200
sequences of length 50. Each sequence changes the model dynamics in man-
ner specified by our samples of p(k| \Theta). For the top histogram, we used the
transition, \vec{}k, at time t of the filtering process that yields the highest poste-
rior, i.e. \mathrm{a}\mathrm{r}\mathrm{g}\mathrm{m}\mathrm{a}\mathrm{x}

\vec{}kt

\Bigl\{
p
\Bigl(
\vec{}kt| \vec{}y1:t

\Bigr) \Bigr\}
, and we achieved on average 79.6\% correct

predictions per sequence. For the other histogram, we used the transition,
\vec{}k, at time t of the smoothing process that yields the highest posterior, i.e.
\mathrm{a}\mathrm{r}\mathrm{g}\mathrm{m}\mathrm{a}\mathrm{x}

\vec{}kt

\Bigl\{
p
\Bigl(
\vec{}kt| \vec{}y1:\tau

\Bigr) \Bigr\}
, and we achieved on average 80.4\% correct predic-

tions per sequence. Since the smoothing process takes into account “future”
observations as well it is to be expected to have a higher accuracy for the
prediction. It is interesting to see though that the filtering distribution is not
falling far behind in terms of prediction performance.

77

5. Bilinear Dynamical Systems

This is probably due to the dynamics matrix A| c=1 and the dictionary matrix W which
are pushing values “harder” along the first dimension. This process increases the noise as
well as the location estimate of the data.

In figure 5.3, we present the results on inference of the transformations. The results,
show an error which is typical to models of this type (Ghahramani and Hinton, 2000).
Notably, the inferred transformations extracted during the filtering process are fairly sim-
ilar in performance to those extracted during the smoothing process where the full dataset
is taken into account.

5.4. Discussion
In this chapter, we presented an algorithm that can be used to infer encodings of transfor-
mations from multi-dimensional sequential data. To infer the latent state of the model we
used an algorithm similar to GBP1 in Bar-Shalom and Li (1993) adapted to the architec-
ture of our model. The main difference of our work compared to most hybrid state space
networks is that we assume that each transformation variable \vec{}k is independent in time.
Typical hybrid state space models appear to assume that if the state variables are going
through certain dynamical process then the transition variables across state spaces will
also go through a certain dynamical process (usually linear for the switching variables).
This assumption stems from the observation that typically the behavior of “change” in
dynamical systems is less volatile than the state of the system. However, we would expect
that the data one would try to explain with a dynamical system of this form are sequences
where the dynamics change abruptly and not in a particularly smooth manner. Another
reason for assuming independence in the transformation variables is that it simplifies in-
ference. Inferring the correct posterior in hybrid state space models (Ghahramani and
Hinton, 2000; Luttinen et al., 2014) appears to be highly challenging throughout the lit-
erature even with ground truth parameters. It is our opinion that the literature in hybrid
state space networks is mature enough in theoretical content but still rather difficult to
manage when it comes to more realistic applications. Inference approaches exist that
utilize MCMC methods (Carter and Kohn, 1996), variational approaches (Ghahramani
and Hinton, 1996; Luttinen et al., 2014), truncated subspace approximations (Bar-Shalom
et al., 1988), merging methods (Bar-Shalom and Li, 1993). These approaches while they
maintain interesting properties are hard to manage in practice. Therefore, we chose to
focus on a simpler hybrid state space network and learning process for our algorithm. We
presented results in an inference task on artificial data that shows performance similar to
established papers in the area (Ghahramani and Hinton, 2000). Our results show high ac-
curacy in identifying transformations both during the filtering and the smoothing process.
However, we need further work to be able to learn transformations rather than simply
infer them from hard coded transformation matrices.

78

6. General Discussion and
Conclusions

In this work we presented a number of probabilistic algorithms addressing primarily two
machine learning topics, learning invariant representations and learning transformations.
Discrete sparse coding and invariant discrete sparse coding were designed to learn repre-
sentations of features in a dataset that were invariant to a set of discrete scaling units and
one-dimensional translations. The deep gated autoencoder and the bilinear dynamical sys-
tem were designed for learning and inference of transformations in groups of datapoints.
We have presented a set of numerical experiments using those algorithms on both arti-
ficial and natural or “realistic” datasets which verify the functionality of our algorithms
and outline significant technical features. The presented work was discussed, separately
for each algorithm, at the end of each chapter. In this final chapter, we wish to compare
some of the work discussed earlier across multiple chapters.

The two topics we deal with here are closely related, albeit they are clearly distinct, and
we often find it necessary to discuss them jointly. In the case of invariant representations
we are dealing with data that are similar to a degree of a certain set of variations. In our
work these variations were explicitly modeled by the latent representation, however, it
is quite common to endeavor invariant representations that simply discard the variations
in the data. Having an explicit model of the change in your dataset is closely related to
learning a transformation of the data. In the case of discrete sparse coding, for instance,
inferring the scale of a datapoint can be used to produce a spike sequence that is nor-
malized in terms of amplitude variations. This kind of normalization is quite similar to
producing analogies of datapoint transformations as we did with deep gated autoencoder.
This feature suggests that explicitly modeling invariances in data produces a transforma-
tion encoding similar to the one presented in chapters 4 and 5, although as we have defined
it here it would be responsible for a more constrained set of transformations. Similarly,
when defining an encoding of a transformation with the deep gated autoencoder you can
use it to produce representations of datapoints that are altered by that transformation. Us-
ing an ensemble of different transformations would produce a set of representations of the
datapoints that is as a whole a representation of the datapoint that is invariant to that set
of transformations. Therefore, one could think of the transformation encoding process in
the deep gated autoencoder as a method to implicitly define invariant representations of
data. In fact, one could state that modeling “content” invariant to “change”, or “change”

79

6. General Discussion and Conclusions

invariant to “content” is technically possible but there are strong dependencies in their
definition.

Chapters 2 and 3 reveal some functional differences between the representations learned
from discrete sparse coding and invariant discrete sparse coding. Especially, when using
extra-cellular recordings the dictionary learned from the invariant discrete sparse coding
appears to outperform an analysis done with the discrete sparse coding version. We expect
that the differences between the two models would become less apparent on sequential
data if the overlap between consecutive datapoints in the case of discrete sparse coding
was higher, for instance, if two consecutive datapoints were responsible for the same ob-
servations in all except the first and last dimensions respectively. In that case we would
be able to produce a maximum likelihood solution for the data using filters that do not
account for the temporal structure in the data, i.e. more similar in structure to the ones in
iDSC. This approach would be more similar to convolutional methods of sparse coding
or in the discrete domain for spike analysis case more similar to the work presented in
Pillow et al. (2013). The main issue we find in this work is that the timing for the spike
is not taken into account, at least not during parameter estimation, and if it is then it is in
some form separate processing stage. While this approach has shown interesting results
we support our work in that learning based on temporal alignment could have consider-
able effects in the representation. Another, issue we have with this “convolution” based
methods is that although overlapping spikes are taken into account (not so common but
there is model based work here Pillow et al., 2013, and system based work in others)
different combinations of temporal alignments for spikes, i.e. when trying to infer when
a spike occurred the timing of that variable is treated independently of the spike timing
of every other latent. This probably reduces the quality of the representation dramati-
cally especially for neurons that exhibit a high degree of synchronization, as it happens
for instance in the auditory cortex. The results of explicit time alignment during learn-
ing had strong effects in the neural data analysis but it does not leave unaffected other
types of sequential data. In the audio dataset, for instance, we were able to extract high
frequency features that we failed to see using discrete sparse coding. Interesting as that
may be, temporal alignment does not appear to be as significant in audio recordings of
human speech as it was on neural data. This is perhaps due to the fact that basic speech
components , e.g. phonemes, are not strongly localized. In fact, they appear to vary based
on the presence of an earlier or a latter phoneme, they change in duration and many other
ways that would reduce the significance of temporal alignment and perhaps make it more
important to introduce other types of invariances like filter size or introducing datapoint
dependencies. In this case a “convolutional” variant for discrete sparse coding should also
be considered. Probably the most prominent feature of our algorithm though that stands
out both in DSC and iDSC is out ability to learn the prior and noise parameters. In other
approaches, these parameters are typically set at ad-hoc values by the scientist and can
lead to considerable biases in the results.

80

The other two models we wish to discuss are the deep gated autoencoder, presented in
chapter 4, and the bilinear dynamical system, presented in chapter 5. They are both trying
to achieve encodings of transformations to characterize the dataset and they are using a
parametrized bilinear form to achieve that. However, there are also lot of very interesting
and often quite subtle differences that could affect the behavior of the models. In the
case of the bilinear dynamical system, we try to infer the encoding through a “search”
in a latent random variable space while in the deep gated autoencoder we produce it de-
terministically using a parametrized bilinear operation in a feed-forward operation of a
neural network. The “transformation” representation for the BDS model as is defined
here is rather simple (only one transformation at a time | \vec{}k| = 1) and may never achieve
the complexity of the representation produced by DGAE. However, the same modeling
principles can be extended to work for any type of encoding with some refinement to the
approximation of the posterior. Another, difference to note is that the two data points in
the DGAE are projected to a different feature space (through different feature matrices
U , and V) while the consecutive data points in the BDS model are connected by trans-
formations defined in the same feature space. One could imagine BDS compensating on
the state space representation by using a higher dimensional state space. However, the
computational complexity of the inference process in the BDS algorithm is greater than
the one in DGAE and therefore scaling in higher dimensions is more difficult. In any
case, the fact that we introduce a probabilistic representation for the encoding allows us
to work on transformation that are easier to manipulate and encodings that are more rigor-
ously defined. Compared to other models defined in the area, we have focused our efforts
to simplifying the model so that we make inference and learning more accurate but also
faster and better scalable.

The work presented in this thesis outlines several aspects of unsupervised learning
with latent variables that specialize in different types of structure in the data. Learning
invariances or transformations from a dataset has proven to be quite difficult. However,
we have shown ways to overcome several of the challenges involved with inference and
learning in this context.

81

Appendix A.

Discrete Sparse Coding

A.1. M-step

To optimize the free energy with respect to W we find the gradient of the free energy and
set it to zero

\nabla w\scrF = \nabla w

\sum
n\in \scrM

\Bigl[\bigl\langle
\mathrm{l}\mathrm{o}\mathrm{g} p

\bigl(
\vec{}y(n)| \vec{}s,\vec{}t,\Theta

\bigr) \bigr\rangle
q(n) +

\bigl\langle
\mathrm{l}\mathrm{o}\mathrm{g} p

\bigl(
\vec{}s,\vec{}t| \Theta

\bigr) \bigr\rangle
q(n)

\Bigr]
= \nabla w

\sum
n\in \scrM

\Biggl[\biggl\langle
 - D

2
\mathrm{l}\mathrm{o}\mathrm{g} 2

\bigl(
\pi \sigma 2
\bigr)
 - \sigma - 2

2

\bigm\| \bigm\| \vec{}y(n) - W\vec{}s
\bigm\| \bigm\| 2
2

\biggr\rangle
q(n)

+

\Biggl\langle \sum
h,k

\delta (\phi k, sh) \mathrm{l}\mathrm{o}\mathrm{g}
\pi k

\tau

\Biggr\rangle
q(n)

\Biggr]
= 0 \leftrightarrow

\nabla w

\sum
n\in \scrM

\Bigl\langle \bigm\| \bigm\| \vec{}y(n) - W\vec{}s
\bigm\| \bigm\| 2
2

\Bigr\rangle
q(n)

= 0 \leftrightarrow \sum
n\in \scrM

\bigl\langle
2
\bigl(
\vec{}y(n) - W\vec{}s

\bigr)
\vec{}sT
\bigr\rangle
q(n) = 0 \leftrightarrow \sum

n\in \scrM

\bigl\langle
\vec{}y(n)\vec{}sT

\bigr\rangle
q(n) -

\sum
n\in \scrM

\bigl\langle
W\vec{}s\vec{}sT

\bigr\rangle
q(n) = 0 \leftrightarrow \sum

n\in \scrM

\vec{}y(n)
\bigl\langle
\vec{}sT
\bigr\rangle
q(n) - W

\sum
n\in \scrM

\bigl\langle
\vec{}s\vec{}sT
\bigr\rangle
q(n) = 0 \leftrightarrow

W =
\sum
n\in \scrM

\vec{}y(n)
\bigl\langle
\vec{}sT
\bigr\rangle
q(n)

\Biggl(\sum
n\in \scrM

\bigl\langle
\vec{}s\vec{}sT
\bigr\rangle
q(n)

\Biggr) - 1

Similarly, we can optimize the free energy with respect to \sigma by setting the free energy
gradient w.r.t. to \sigma equal to zero.

83

Appendix A. Discrete Sparse Coding

\nabla \sigma \scrF = \nabla \sigma

\sum
n\in \scrM

\Bigl[\bigl\langle
\mathrm{l}\mathrm{o}\mathrm{g} p

\bigl(
\vec{}y(n)| \vec{}s,\Theta

\bigr) \bigr\rangle
q(n) + \langle \mathrm{l}\mathrm{o}\mathrm{g} p (\vec{}s| \Theta)\rangle q(n)

\Bigr]
= \nabla \sigma

\sum
n\in \scrM

\Biggl[\biggl\langle
 - D

2
\mathrm{l}\mathrm{o}\mathrm{g}
\bigl(
2\pi \sigma 2

\bigr)
 - \sigma - 2

2

\bigm\| \bigm\| \vec{}y(n) - W\vec{}s
\bigm\| \bigm\| 2
2

\biggr\rangle
q(n)

+

\Biggl\langle \sum
h,k

\delta (\phi k, sh) \mathrm{l}\mathrm{o}\mathrm{g} \pi k

\Biggr\rangle
q(n)

\Biggr]
= 0 \leftrightarrow

\sum
n\in \scrM

\biggl\langle
 - D

1

\sigma 2
\sigma

\biggr\rangle
q(n)

+
\sum
n\in \scrM

\Bigl\langle
\sigma - 3

\bigm\| \bigm\| \vec{}y(n) - W\vec{}s
\bigm\| \bigm\| 2
2

\Bigr\rangle
q(n)

= 0 \leftrightarrow

 - D | \scrM |
\sigma

+ \sigma - 3
\sum
n\in \scrM

\Bigl\langle \bigm\| \bigm\| \vec{}y(n) - W\vec{}s
\bigm\| \bigm\| 2
2

\Bigr\rangle
q(n)

= 0 \leftrightarrow

\sigma 2 =
1

D | \scrM |
\sum
n\in \scrM

\Bigl\langle \bigm\| \bigm\| \vec{}y(n) - W\vec{}s
\bigm\| \bigm\| 2
2

\Bigr\rangle
q(n)

\leftrightarrow

\sigma =

\sqrt{}
1

D | \scrM |
\sum
n\in \scrM

\Bigl\langle
\| \vec{}y(n) - W\vec{}s\| 22

\Bigr\rangle
q(n)

To optimize the free energy with respect to \pi we find the gradient of the free energy
and set it to zero under the constraint that

\sum
i \pi i = 1. To constrain the free energy

appropriately we use the Lagrange multipliers method with
\sum

i \pi i = 1 as the Lagrangian.

84

A.1. M-step

\nabla \pi i
\scrF = \nabla \pi i

\sum
n\in \scrM

\Bigl[\bigl\langle
\mathrm{l}\mathrm{o}\mathrm{g} p

\bigl(
\vec{}y(n)| \vec{}s,\Theta

\bigr) \bigr\rangle
q(n) +

\bigl\langle
\mathrm{l}\mathrm{o}\mathrm{g} p

\bigl(
\vec{}s,\vec{}t| \Theta

\bigr) \bigr\rangle
q(n)

\Bigr]
 - \nabla \pi i

\lambda

\Biggl(\sum
k

\pi k - 1

\Biggr)

= \nabla \pi i

\sum
n\in \scrM

\Biggl[\biggl\langle
 - D

2
\mathrm{l}\mathrm{o}\mathrm{g}
\bigl(
2\pi \sigma 2

\bigr)
 - \sigma - 2

2

\bigm\| \bigm\| \vec{}y(n) - W\vec{}s
\bigm\| \bigm\| 2
2

\biggr\rangle
q(n)

+

\Biggl\langle \sum
h,k

\delta (\phi k, sh) \mathrm{l}\mathrm{o}\mathrm{g} \pi k

\Biggr\rangle
q(n)

\Biggr]
 - \nabla \pi i

\lambda

\Biggl(\sum
k

\pi k - 1

\Biggr)
= 0 \leftrightarrow

\nabla \pi l

\sum
n\in \scrM

\Biggl\langle \sum
h,k

\delta (\phi k, sh) \mathrm{l}\mathrm{o}\mathrm{g} \pi k

\Biggr\rangle
q(n)

 - \nabla \pi l
\lambda

\Biggl(\sum
k

\pi k - 1

\Biggr)
= 0 \leftrightarrow

\sum
n\in \scrM

\Biggl\langle \sum
h,k

\delta (\phi k, sh)
1

\pi i

\Biggr\rangle
q(n)

 - \lambda = 0 \leftrightarrow

\pi i =

\sum
n\in \scrM

\Bigl\langle \sum
h,k \delta (\phi k, sh)

\Bigr\rangle
q(n)

\lambda

For \lambda we have:

\lambda

\Biggl(\sum
k

\pi k - 1

\Biggr)
= 0 \leftrightarrow

\lambda

\left(\sum
k

\sum
n\in \scrM

\Bigl\langle \sum
h,k \delta (\phi k, sh)

\Bigr\rangle
q(n)

\lambda
 - 1

\right) = 0 \leftrightarrow

\lambda =
\sum
k

\sum
n\in \scrM

\Biggl\langle \sum
h,k

\delta (\phi k, sh)

\Biggr\rangle
q(n)

85

Appendix B.

Time-invariant Discrete Sparse
Coding

B.1. M-step

To optimize the free energy with respect to W we find the gradient of the free energy and
set it to zero

\nabla w\scrF = \nabla w

\sum
n\in \scrM

\Bigl[\bigl\langle
\mathrm{l}\mathrm{o}\mathrm{g} p

\bigl(
\vec{}y(n)| \vec{}s,\vec{}t,\Theta

\bigr) \bigr\rangle
q(n) +

\bigl\langle
\mathrm{l}\mathrm{o}\mathrm{g} p

\bigl(
\vec{}s,\vec{}t| \Theta

\bigr) \bigr\rangle
q(n)

\Bigr]
= \nabla w

\sum
n\in \scrM

\Biggl[\biggl\langle
 - D

2
\mathrm{l}\mathrm{o}\mathrm{g} 2

\bigl(
\pi \sigma 2
\bigr)
 - \sigma 2

2

\bigm\| \bigm\| \vec{}y(n) - f
\bigl(
W,\vec{}t

\bigr)
\vec{}s
\bigm\| \bigm\| 2
2

\biggr\rangle
q(n)

+

\Biggl\langle \sum
h,k

\delta (\phi k, sh) \mathrm{l}\mathrm{o}\mathrm{g}
\pi k

\tau

\Biggr\rangle
q(n)

\Biggr]
= 0 \leftrightarrow

The only component with a non-zero gradient is the quadratic:

87

Appendix B. Time-invariant Discrete Sparse Coding

\partial

\partial Wk,l

\Biggl\langle \sum
i=1,...,Dy

\Biggl(
yi -

\sum
j

Wi+tj ,jsj

\Biggr) 2\Biggr\rangle
q(n)

=

\Biggl\langle
2

\Biggl(
yi -

\sum
j

Wi+tj ,jsj

\Biggr)
\partial

\partial Wk,l

\sum
j

Wi+tj ,jsj

\Biggr\rangle
q(n)

=

\Biggl\langle
2

\Biggl(
yi -

\sum
j

Wi+tj ,jsj

\Biggr)
\delta (k = i+ tj) \delta (l = j) sj

\Biggr\rangle
q(n)

=

\Biggl\langle
2

\Biggl(
yi -

\sum
j

Wi+tj ,jsj

\Biggr)
\delta (k = i+ tj) sl

\Biggr\rangle
q(n)

= 2

\Biggl\langle
yi\delta (k = i+ tj) sl -

\sum
j

Wi+tj ,jsj\delta (k = i+ tj) sl

\Biggr\rangle
q(n)

= 0 \leftrightarrow

\langle yi\delta (k = i+ tj) sl\rangle q(n) =

\Biggl\langle \sum
j

Wi+tj ,jsj\delta (k = i+ tj) sl

\Biggr\rangle
q(n)

\leftrightarrow

\bigl\langle
yk - tjsl

\bigr\rangle
q(n) =

\sum
j

Wk,j \langle sjsl\rangle q(n) \leftrightarrow multiply with the inverse of sjsl\bigl\langle
yk - tjsl

\bigr\rangle
q(n) \langle sjsl\rangle - 1

q(n) =
\sum
j

Wk,j\delta (j = l) \leftrightarrow

Wk,l =
\bigl\langle
yk - tjsl

\bigr\rangle
q(n) \langle (sjsl)\rangle - 1

q(n) \leftrightarrow
W = \langle \vec{}y - t\vec{}s\rangle q(n)

\bigl\langle \bigl(
ssT
\bigr) \bigr\rangle - 1

q(n)

The result aligns the datapoints with the corresponding column as prescribed by the
shift variable

The M-step updates for the \sigma , and \vec{}pi parameters of the iDSC algorithm do not change
significantly when compared with the DSC case since they are not affected by the function
f
\bigl(
W,\vec{}t

\bigr)
, see A.1.

88

Appendix C.

BiLinear Dynamical Systems

C.1. Properties of Mutlivariate Gaussian
Distributions

Let \vec{}x, and \vec{}y two vectors with dimensions Dx, and Dy respectively. We define the vector

\vec{}z =

\biggl[
\vec{}x
\vec{}y

\biggr]
of dimensionality D = Dx +Dy that is composed by concatenating \vec{}x, and \vec{}y.

We assume that a multivariate gaussian over \vec{}z, i.e. p (\vec{}z) = \scrN (\vec{}z| \vec{}\mu ,\Sigma), is parametrized
by:

\vec{}\mu =

\biggl[
\vec{}\mu x

\vec{}\mu y

\biggr]
(C.1)

\Sigma =

\biggl[
\Sigma x \Sigma xy

\Sigma yx \Sigma

\biggr]
(C.2)

where \vec{}\mu x \in \BbbR Dx ,\vec{}\mu y \in \BbbR Dy ,\Sigma x \in \BbbR Dx\times Dx , and \Sigma y \in \BbbR Dy\times Dy .
then the marginal distribution of \vec{}x is:

p (\vec{}x) = \scrN (\vec{}x| \vec{}\mu x,\Sigma x) (C.3)

and the conditional distribution of \vec{}x given \vec{}y is parametrized by:

\mu x| y = \mu x + \Sigma xy\Sigma
 - 1
yy (\vec{}y - \vec{}\mu y) , and (C.4)

\Sigma x| y = \Sigma xx - \Sigma xy\Sigma
 - 1
yy \Sigma yx (C.5)

i.e. p (\vec{}x| \vec{}y) = \scrN
\bigl(
\vec{}x| \mu x + \Sigma xy\Sigma

 - 1
yy (\vec{}y - \vec{}\mu y) ,\Sigma xx - \Sigma xy\Sigma

 - 1
yy \Sigma yx

\bigr)
(C.6)

We merge a mixture of Gaussians model to single Gaussian distribution with paramters:

89

Appendix C. BiLinear Dynamical Systems

\vec{}\mu = E [x] = E [E [x| k]] =
\sum
c

\pi c\vec{}\mu c=1 (C.7)

\Sigma = E
\bigl[
\vec{}x\vec{}xT

\bigr]
 - E [\vec{}x]E [\vec{}x]T = E

\bigl[
E
\bigl[
\vec{}x\vec{}xT | k

\bigr] \bigr]
 - E [E [\vec{}x| k]]E [E [\vec{}x| k]]T

= E
\Bigl[
cov [\vec{}x| k] + E [\vec{}x| k]E [\vec{}x| k]T

\Bigr]
 - E [E [\vec{}x| k]]E [E [\vec{}x| k]]T

= E [cov [\vec{}x| k]] + E
\Bigl[
E [\vec{}x| k]E [\vec{}x| k]T

\Bigr]
 - E [E [\vec{}x| k]]E [E [\vec{}x| k]]T

= E [cov [\vec{}x| k]] + cov
\Bigl[
E [\vec{}x| k]E [\vec{}x| k]T

\Bigr]
=
\sum
c

\pi c\Sigma c -
\sum
c

\pi c (\vec{}\mu c - \vec{}\mu) (\vec{}\mu c - \vec{}\mu)T

=
\sum
c

\pi c

\Bigl(
\Sigma c - (\vec{}\mu c - \vec{}\mu) (\vec{}\mu c - \vec{}\mu)T

\Bigr)
(C.8)

for a detailed derivation of marginalization and conditioning over Gaussians see Bishop
(2006).

C.2. Filtering - Forward Pass

The filtering process identifies the probabilities p (\vec{}zt| \vec{}y1:t - 1), p
\Bigl(
\vec{}kt| \vec{}y1:t

\Bigr)
, and p (\vec{}zt| \vec{}y1:t).

E
\Bigl[
\vec{}zt| \vec{}y1:t - 1, \vec{}k

\Bigr]
= A| k\^z

t - 1
t - 1 = \^zt - 1

t| k (C.9)

cov
\Bigl[
\vec{}zt| \vec{}y1:t - 1, \vec{}k

\Bigr]
= A| kV

t - 1
t - 1 A

T
| k + \Gamma = V t - 1

t| k (C.10)

p (kc=1| \vec{}y1:t) =
p (\vec{}yt| \vec{}y1:t - 1, kc = 1)\pi t - 1

c\sum
c\prime p (\vec{}yt| \vec{}y1:t - 1, kc\prime = 1)\pi t - 1

c\prime
= \pi t

c (C.11)

where p (\vec{}yt| \vec{}y1:t - 1, kc = 1) is parametrized by:

E
\Bigl[
\vec{}yt| \vec{}y1:t - 1, \vec{}k

\Bigr]
= W \^zt - 1

t

cov
\Bigl[
\vec{}yt| \vec{}y1:t - 1, \vec{}k

\Bigr]
= WV t - 1

t W T + \Sigma

now we can use equation C.11 with C.7 andC.8 to merge the predictions into a single

90

C.3. Smoothing - Backward Pass

Gaussian:

E
\Bigl[
E
\Bigl[
\vec{}zt| \vec{}y1:t - 1, \vec{}k

\Bigr] \Bigr]
=

\sum
c

\pi t
c\^z

t - 1
t = \^zt (C.12)

E
\Bigl[
cov

\Bigl[
\vec{}zt| \vec{}y1:t - 1, \vec{}k

\Bigr] \Bigr]
=
\sum
c

\pi t
c

\biggl(
V t - 1
t| kc=1 +

\Bigl(
\^zt - 1
t| kc=1 - \^zt - 1

t

\Bigr) \Bigl(
\^zt - 1
t| kc=1 - \^zt - 1

t

\Bigr) T\biggr)
= V t - 1

t (C.13)

now that we have the prediction we can proceed with the correction as in the standard
kalman filter case Bishop (2006); Murphy (2012)

Kt = V t - 1
t W T

\bigl(
\Sigma +WV t - 1

t W T
\bigr) - 1

(C.14)

\^ztt = \^zt - 1
t +Kt

\bigl(
\vec{}yt - W \^zt - 1

t

\bigr)
(C.15)

V t
t = (I - KtW)V t - 1

t (C.16)

Equations C.12-C.13 parametrize p (\vec{}zt| \vec{}y1:t - 1), equation C.11 parametrizes p
\Bigl(
\vec{}kt| \vec{}y1:t

\Bigr)
,

and equations C.15-C.16 parametrize p (\vec{}zt| \vec{}y1:t). Given the transformation \vec{}k the filtering
equations fall back to the filtering equations of the Kalman filter. For equations C.9,C.10,
and C.14-C.16 we Kalman filter recursice rules that can easily be found in the literature
Bishop (2006); Murphy (2012).

C.3. Smoothing - Backward Pass

In the smoothing stage we identify p
\Bigl(
\vec{}kt| \vec{}y1:\tau

\Bigr)
, and p (\vec{}zt| \vec{}y1:\tau). We achieve that by defining

p
\Bigl(
\vec{}zt - 1, \vec{}zt| \vec{}y1:\tau , \vec{}kt

\Bigr)
and then identifying the conditional p

\Bigl(
\vec{}zt - 1| \vec{}zt, \vec{}y1:\tau , \vec{}kt

\Bigr)
.

The distribution p
\Bigl(
\vec{}zt - 1, \vec{}zt| \vec{}y1:\tau , \vec{}kt

\Bigr)
is parametrized by:\biggl[

\^zt - 1
t - 1

\^zt - 1
t| k

\biggr]
\biggl[

V t - 1
t - 1 V t - 1

t - 1 A
T
| k

AT
| kV

t - 1
t - 1 V t - 1

t| k

\biggr]
conditioning on \vec{}zt using C.4 and C.5 we get:

91

Appendix C. BiLinear Dynamical Systems

\^ztt - 1| k = \^zt - 1
t - 1 + V t - 1

t - 1 A
T
| k

\Bigl(
V t - 1
t| k

\Bigr) - 1 \Bigl(
\vec{}zt - 1
t| k - \^zt - 1

t| k

\Bigr)

V t
t - 1| k = V t - 1

t - 1 - V t - 1
t - 1 A

T
| k

\Bigl(
V t - 1
t| k

\Bigr) - 1

AT
| kV

t - 1
t - 1

defining Jt - 1| k = V t - 1
t - 1 A

T
| k

\Bigl(
V t - 1
t| k

\Bigr) - 1

\^ztt - 1| k = \^zt - 1
t - 1 + Jt - 1| k

\Bigl(
\vec{}zt| k - \^zt - 1

t| k

\Bigr)

V t
t - 1| k = V t - 1

t - 1 - Jt - 1| kV
t - 1
t| k JT

t - 1| k

for the mean of p (\vec{}zt| \vec{}y1:\tau) we have:

\^z\tau t - 1| k = E [\vec{}zt - 1| \vec{}y1:\tau] = E
\Bigl[
E
\Bigl[
\vec{}zt - 1| \vec{}y1:\tau , \vec{}kt, \vec{}zt

\Bigr]
| \vec{}y1:\tau

\Bigr]
= E

\Bigl[
E
\Bigl[
\vec{}zt - 1| \vec{}y1:\tau , \vec{}kt, \vec{}zt

\Bigr]
| \vec{}y1:\tau

\Bigr]
= E

\Bigl[
\^zt - 1
t - 1 + Jt - 1| k

\Bigl(
\vec{}zt| k - \^zt - 1

t| k

\Bigr)
| \vec{}y1:\tau

\Bigr]
= \^zt - 1

t - 1 + Jt - 1| k

\Bigl(
\^z\tau t| k - \^zt - 1

t| k

\Bigr)

the mean of p (\vec{}zt| \vec{}y1:\tau) =
\sum

\bfk \^z
\tau
t - 1| k requires calculation over all the potential combi-

nations of \vec{}k over \tau datapoints. Since this is intractable we introduce the term \^z\tau t - 1 =\sum
c \pi c\^z

\tau
t| kc=1 in the recursive rule above.

\^z\tau t - 1| k = \^zt - 1
t - 1 + Jt - 1| k

\Bigl(
\^z\tau t - \^zt - 1

t| k

\Bigr)

and for the variance

92

C.4. Parameter Estimation

V \tau
t - 1| k = cov [\vec{}zt - 1| \vec{}y1:\tau]

= cov
\Bigl[
E
\Bigl[
\vec{}zt - 1| \vec{}zt, \vec{}kt, \vec{}y1:\tau

\Bigr]
| \vec{}y1:\tau

\Bigr]
+ E

\Bigl[
cov

\Bigl[
\vec{}zt - 1| \vec{}kt, \vec{}zt, \vec{}y1:\tau

\Bigr]
| \vec{}y1:\tau

\Bigr]
= cov

\Bigl[
\^zt - 1
t - 1 + Jt - 1| k

\Bigl(
\vec{}zt| k - \^zt - 1

t| k

\Bigr)
| \vec{}y1:\tau

\Bigr]
+ E

\Bigl[
V t - 1
t - 1 - Jt - 1| kV

t - 1
t| k JT

t - 1| k| \vec{}y1:\tau
\Bigr]

= Jt - 1| kcov
\Bigl[\Bigl(

\vec{}zt| k - \^zt - 1
t| k

\Bigr)
| \vec{}y1:\tau

\Bigr]
J t
t - 1| k + V t - 1

t - 1 - Jt - 1| kV
t - 1
t| k JT

t - 1| k

= Jt - 1| kV
\tau
t| kJ

t
t - 1| k + V t - 1

t - 1 - Jt - 1| kV
t - 1
t| k JT

t - 1| k

= V t - 1
t - 1 - Jt - 1| k

\Bigl(
V \tau
t| k - V t - 1

t| k

\Bigr)
JT
t - 1| k

once more we simplify the recursion by merging the covariances of the earlier step as:

V \tau
t - 1 =

\sum
c

\pi c

\Bigl(
V \tau
t| kc=1 +

\bigl(
\^z\tau t - 1| kc=1 - \^z\tau t - 1

\bigr) \bigl(
\^z\tau t - 1| kc=1 - \^z\tau t - 1

\bigr) T\Bigr)
so the recursion rule becomes.

V \tau
t - 1| k = V t - 1

t - 1 - Jt - 1| k

\Bigl(
V \tau
t - V t - 1

t| k

\Bigr)
JT
t - 1| k

The approximations in the update rules have been show to approximate the posterior
fairly well in section 5. An additional statistic that we would need to compute is the cross-
covariance Vt - 1,t| k for which this approximation does not provide a sufficient description.
One might look to extend this approximation in a manner analogous to the GPB2 in Bar-
Shalom and Li (1993) where the probabilities are merged after every second time step.

C.4. Parameter Estimation

We take the objective that we need to optimize in the M-step from 5.5 :

93

Appendix C. BiLinear Dynamical Systems

Q =
\sum
n

\sum
t

\int
\vec{}zt

\sum
k

q
\bigl(
\vec{}zt, k| \Theta \mathrm{o}\mathrm{l}\mathrm{d}

\bigr)
\mathrm{l}\mathrm{o}\mathrm{g} p

\Bigl(
\vec{}y
(n)
t | zt, k,\Theta

\Bigr)
+
\sum
t=2

\int
\vec{}zt,t - 1

\sum
k

q
\bigl(
\vec{}zt,t - 1, k| \Theta \mathrm{o}\mathrm{l}\mathrm{d}

\bigr)
\mathrm{l}\mathrm{o}\mathrm{g} p (\vec{}zt| k, \vec{}zt - 1,\Theta) p(k| \Theta)

+

\int
\vec{}z1

\sum
k

q
\bigl(
\vec{}z1| \Theta \mathrm{o}\mathrm{l}\mathrm{d}

\bigr)
\mathrm{l}\mathrm{o}\mathrm{g} p (\vec{}z1| \Theta)

=
\sum
n

\Biggl(\sum
t

\biggl\langle
 - 1

2
\mathrm{l}\mathrm{o}\mathrm{g} \mathrm{d}\mathrm{e}\mathrm{t} (2\pi \Sigma) - 1

2

\Bigl(
\vec{}yt

(n) - W\vec{}zt

\Bigr)
\Sigma - 1

\Bigl(
\vec{}yt

(n) - W\vec{}zt

\Bigr) T\biggr\rangle
q

+
\sum
t=2

\Biggl\langle
 - 1

2
\mathrm{l}\mathrm{o}\mathrm{g} \mathrm{d}\mathrm{e}\mathrm{t} (2\pi \Gamma) - 1

2

\bigl(
\vec{}zt - A| k\vec{}zt - 1

\bigr)
\Gamma - 1

\bigl(
\vec{}zt - A| k\vec{}zt - 1

\bigr) T
+
\sum
c

kc \mathrm{l}\mathrm{o}\mathrm{g} (\pi c)

\Biggr\rangle
q

+

\biggl\langle
 - 1

2
\mathrm{l}\mathrm{o}\mathrm{g} \mathrm{d}\mathrm{e}\mathrm{t} (2\pi R) - 1

2

\Bigl(
\vec{}yt

(n) - W\vec{}z\tau 1,k

\Bigr)
R - 1

\Bigl(
\vec{}yt

(n) - W\vec{}z\tau 1,k

\Bigr) T\biggr\rangle
q

\Biggr)

For the dictionary matrix W we find:

\nabla wQ = \nabla w

\sum
n

\Biggl(\sum
t

\biggl\langle
 - 1

2

\Bigl(
\vec{}yt

(n) - W\vec{}zt

\Bigr)
\Sigma - 1 (\vec{}yt - W\vec{}zt)

T

\biggr\rangle
q

\Biggr)
= 0 \leftrightarrow

\sum
n

\Biggl(\sum
t

\Bigl\langle \Bigl(
\vec{}yt

(n) - W\vec{}zt

\Bigr)
\vec{}zTt

\Bigr\rangle
q

\Biggr)
= 0 \leftrightarrow

W new =
\sum
n

\Biggl(
\vec{}yt

(n)
\sum
t

\bigl\langle
\vec{}zTt
\bigr\rangle
q

\Biggr) \Biggl(\sum
n

\Biggl(\sum
t

\bigl\langle
\vec{}zt\vec{}z

T
t

\bigr\rangle
q

\Biggr) \Biggr) - 1

For the observation covariance matrix \Sigma we find:

94

C.4. Parameter Estimation

\nabla \Sigma Q = \nabla \Sigma

\sum
n

\Biggl(\sum
t

\biggl\langle
 - 1

2
\mathrm{l}\mathrm{o}\mathrm{g} \mathrm{d}\mathrm{e}\mathrm{t} (2\pi \Sigma) - 1

2

\Bigl(
\vec{}yt

(n) - W\vec{}zt

\Bigr)
\Sigma - 1

\Bigl(
\vec{}yt

(n) - W\vec{}zt

\Bigr) T\biggr\rangle
q

\Biggr)
= 0 \leftrightarrow

\sum
n

\Biggl(\sum
t

\biggl\langle
 - 1

2
\Sigma - 1 +

1

2
\Sigma - 1

\Bigl(
\vec{}yt

(n) - W\vec{}zt

\Bigr) \Bigl(
\vec{}yt

(n) - W\vec{}zt

\Bigr) T
\Sigma - 1

\biggr\rangle
q

\Biggr)
= 0 \leftrightarrow

\sum
n

\Biggl(\sum
t

\biggl\langle
 - \Sigma +

\Bigl(
\vec{}yt

(n) - W\vec{}zt

\Bigr) \Bigl(
\vec{}yt

(n) - W\vec{}zt

\Bigr) T\biggr\rangle
q

\Biggr)
= 0 \leftrightarrow

\Sigma new =
1

NT

\sum
n

\Biggl(\sum
t

\biggl\langle \Bigl(
\vec{}yt

(n) - W\vec{}zt

\Bigr) \Bigl(
\vec{}yt

(n) - W\vec{}zt

\Bigr) T\biggr\rangle
q

\Biggr)
\leftrightarrow

\Sigma new =
1

NT

\sum
n

\Biggl(\sum
t

\Bigl\langle
\vec{}yt

(n)\vec{}yt
(n)T - W\vec{}zt\vec{}yt

(n)T - \vec{}yt
(n)\vec{}zTt W

T +W\vec{}zt\vec{}z
T
t W

T
\Bigr\rangle
q

\Biggr)

\Sigma new =
1

NT

\sum
n

\Biggl(\sum
t

\vec{}yt
(n)\vec{}yt

(n)T - W \langle \vec{}zt\rangle q \vec{}yt(n)T - \vec{}yt
(n)
\bigl\langle
\vec{}zTt
\bigr\rangle
q
W T +W

\bigl\langle
\vec{}zt\vec{}z

T
t

\bigr\rangle
q
W T

\Biggr)

the expectation values are directly computed by the equations described in chapter 5.
For the parameters A, and \Gamma we need expectation values that at this time our algorithm

does not compute. For the parameters \vec{}\mu , R, and \pi the update rules are trivial and nearly
identical to the kalman filter literature or the prior update derived earlier in the discrete
sparse coding section.

95

List of Figures

2.1. DSC on a Linear Barstest . 20
2.2. Binary DSC on natural images . 23
2.3. Ternary DSC on natural images . 24
2.4. DSC on natural images . 25
2.5. Learned Dictionary from DSC on Neural Recordings 28
2.6. Graphical Representation of time series treatment for DSC 30
2.7. DSC reconstruction of Neural Recordings 31
2.8. DSC Reconstruction results of Neural Recordings 32
2.9. Learned Dictionary from DSC on Audio waveform 34
2.10. Sparsity and Noise of DSC on Audio waveform 35
2.11. DSC Reconstruction of Audio waveform 36

3.1. Time-Invariant DSC Generative Model. 43
3.2. iDSC learned dictionary . 49
3.3. iDSC signal decomposition . 51
3.4. iDSC Reconstruction results of Neural Recordings 52
3.5. Learned Parameters from iDSC on Audio waveform 54
3.6. iDSC Reconstruction of Audio waveform 56

4.1. Architecture of Transformation Encoding Neural Networks 61
4.2. Image Analogies . 65
4.3. Image Analogies - Failed Examples . 66
4.4. Image Analogies - Good Examples . 66

5.1. BDS Graphical Model. 70
5.2. BDS state inference on artificial data . 76
5.3. BDS transition inference on artificial data 77

97

Bibliography

Ackerson, G. and Fu, K. (1970). On state estimation in switching environments. IEEE
Transactions on Automatic Control, 15(1):10–17.

Aharon, M., Elad, M., and Bruckstein, A. (2006). K-SVD: An Algorithm for Design-
ing Overcomplete Dictionaries for Sparse Representation. Signal Processing, IEEE
Transactions on, 54(11):4311–22.

Alain, D. and Olivier, S. (2013). Gated autoencoders with tied input weights. In Proceed-
ings of the 30th International Conference on Machine Learning (ICML-13), volume 28,
pages 154–162.

Anderson, C. H. and Van Essen, D. C. (1987). Shifter circuits: a computational strategy
for dynamic aspects of visual processing. Proceedings of the National Academy of
Sciences of the United States of America, 84(17):6297–301.

Baldi, P. and Hornik, K. (1989). Neural networks and principal component analysis:
Learning from examples without local minima. Neural Networks, 2(1):53–58.

Baldi, P. and Sadowski, P. J. (2013). Understanding dropout. In Advances in Neural
Information Processing Systems, pages 2814–2822.

Bar-Shalom, Y., Fortmann, T. E., Tracking, Association, D., et al. (1988). Mathematics
in science and engineering.

Bar-Shalom, Y. and Li, X.-R. (1993). Estimation and tracking- principles, techniques,
and software. Norwood, MA: Artech House, Inc, 1993.

Battiti, R. (1992). First-and second-order methods for learning: between steepest descent
and newton’s method. Neural computation, 4(2):141–166.

Baum, L. E., Petrie, T., Soules, G., and Weiss, N. (1970). A maximization technique
occurring in the statistical analysis of probabilistic functions of markov chains. The
annals of mathematical statistics, 41(1):164–171.

Bell, A. J. and Sejnowski, T. J. (1997). The “independent components” of natural scenes
are edge filters. Vision Research, 37(23):3327–38.

99

BIBLIOGRAPHY

Bengio, Y., Boulanger-Lewandowski, N., and Pascanu, R. (2013). Advances in optimizing
recurrent networks. In 2013 IEEE International Conference on Acoustics, Speech and
Signal Processing, pages 8624–8628. IEEE.

Berkes, P., Turner, R., and Sahani, M. (2008). On sparsity and overcompleteness in image
models. Advances in Neural Information Processing Systems, 21.

Bingham, E. and Hyvärinen, A. (2000). A fast fixed-point algorithm for independent
component analysis of complex valued signals. International journal of neural systems,
10(01):1–8.

Bingham, E., Kabán, A., and Fortelius, M. (2009). The aspect bernoulli model: multiple
causes of presences and absences. Pattern Analysis and Applications, 12(1):55–78.

Bishop, C. (2006). Pattern Recognition and Machine Learning. Springer.

Bornschein, J., Henniges, M., and Lücke, J. (2013). Are v1 simple cells optimized for
visual occlusions? a comparative study. PLoS Computational Biology, 9(6):e1003062.

Bornschein, J., Henniges, M., Puertas, G., and Lücke, J. (2012). Are V1 receptive fields
shaped by low-level visual occlusions? in prep.

Cadieu, C. F. and Olshausen, B. A. (2012). Learning intermediate-level representations
of form and motion from natural movies. Neural Computation, 24(4):827–866.

Carlson, D. E., Vogelstein, J. T., Wu, Q., Lian, W., Zhou, M., Stoetzner, C. R., Kipke,
D., Weber, D., Dunson, D. B., and Carin, L. (2014). Multichannel electrophysiological
spike sorting via joint dictionary learning and mixture modeling. IEEE Transactions
on Biomedical Engineering, 61(1):41–54.

Carter, C. K. and Kohn, R. (1996). Markov chain monte carlo in conditionally gaussian
state space models. Biometrika, 83(3):589–601.

Dai, Z., Exarchakis, G., and Lücke, J. (2013). What are the invariant occlusive compo-
nents of image patches? a probabilistic generative approach. In Advances in Neural
Information Processing Systems, pages 243–251.

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood from
incomplete data via the EM algorithm (with discussion). Journal of the Royal Statistical
Society B, 39:1–38.

Donoho, D. L. (2006). Compressed sensing. IEEE Transactions on information theory,
52(4):1289–1306.

100

BIBLIOGRAPHY

Eldar, Y. C. and Kutyniok, G. (2012). Compressed sensing: theory and applications.
Cambridge University Press.

Exarchakis, G., Henniges, M., Eggert, J., and Lücke, J. (2012). Ternary sparse coding. In
Proceedings LVA/ICA, LNCS. Springer. in press.

Exarchakis, G. and Lücke, J. (2017). Discrete sparse coding. (in press) Neural Computa-
tion.

Field, D. J. (1994). What is the goal of sensory coding? Neural Comput., 6(4):559–601.

Földiák, P. (1991). Learning invariance from transformation sequences. Neural Compu-
tation, 3(2):194–200.

Frolov, A. A., Húsek, D., and Polyakov, P. Y. (2016). Comparison of seven methods for
boolean factor analysis and their evaluation by information gain. IEEE transactions on
neural networks and learning systems, 27(3):538–550.

Garofolo, J. S., Lamel, L. F., Fisher, W. M., Fiscus, J. G., Pallett, D. S., and Dahlgren,
N. L. (1993). \{ DARPA\} \{ TIMIT\} Acoustic Phonetic Continuous Speech Corpus
\{ CDROM\} .

Ghahramani, Z. and Hinton, G. E. (1996). Parameter estimation for linear dynamical
systems. Technical report, Technical Report CRG-TR-96-2, University of Totronto,
Dept. of Computer Science.

Ghahramani, Z. and Hinton, G. E. (2000). Variational learning for switching state-space
models. Neural computation, 12(4):831–864.

Goodfellow, I., Courville, A. C., and Bengio, Y. (2012). Large-scale feature learning with
spike-and-slab sparse coding. In ICML.

Goodfellow, I. J., Courville, A., and Bengio, Y. (2013). Scaling up spike-and-slab models
for unsupervised feature learning. IEEE transactions on pattern analysis and machine
intelligence, 35(8):1902–1914.

Griffiths, T. L. and Ghahramani, Z. (2011). The indian buffet process: An introduction
and review. Journal of Machine Learning Research, 12(Apr):1185–1224.

Haft, M., Hofman, R., and Tresp, V. (2004). Generative binary codes. Pattern Anal Appl,
6:269–84.

Hancock, P. J. B., Baddeley, R. J., and Smith, L. (1992). The principal components of
natural images. Network: Computation in Neural Systems, 3:61 – 70.

101

BIBLIOGRAPHY

Harris, K. D., Henze, D. A., Csicsvari, J., Hirase, H., and Buzsáki, G. (2000). Accuracy
of Tetrode Spike Separation as Determined by Simultaneous Intracellular and Extracel-
lular Measurements. Journal of Neurophysiology, 84(1):401–414.

Henniges, M., Puertas, G., Bornschein, J., Eggert, J., and Lücke, J. (2010). Binary sparse
coding. In Proceedings LVA/ICA, LNCS 6365, pages 450–57. Springer.

Henniges, M., Turner, R. E., Sahani, M., Eggert, J., and Lücke, J. (2014). Efficient
occlusive components analysis. Journal of Machine Learning Research, 15:2689–2722.

Henze, D. A., Borhegyi, Z., Csicsvari, J., Mamiya, A., Harris, K. D., and Buzsáki, G.
(2000). Intracellular features predicted by extracellular recordings in the hippocampus
in vivo. Journal of neurophysiology, 84(1):390–400.

Henze, D. A., Borhegyi, Z., Csicsvari, J., Mamiya, A., Harris, K. D., and Buzsáki, G.
(2009). Simultaneous intracellular and extracellular recordings from hippocampus re-
gion ca1 of anesthetized rats. CRCNS.org.

Hinton, G. (1981). Shape representation in parallel systems. Proceedings of the 7th
international joint conference on

Hinton, G. E. and Lang, K. J. (1985). Shape recognition and illusory conjunctions. In
IJCAI, pages 252–259.

Hinton, G. E. and Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with
neural networks. Science, 313(5786):504–507.

Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. R.
(2012). Improving neural networks by preventing co-adaptation of feature detectors.
arXiv preprint arXiv:1207.0580.

Holmes, E. E. (2013). Derivation of an em algorithm for constrained and un-
constrained multivariate autoregressive state-space (marss) models. arXiv preprint
arXiv:1302.3919.

Hotelling, H. (1933). Analysis of a complex of statistical variables into principal compo-
nents. Journal of Educational Psychology, 24.

Hoyer, P. O. (2002). Non-negative sparse coding. In Neural Networks for Signal Process-
ing XII: Proceedings of the IEEE Workshop on Neural Networks for Signal Processing,
pages 557–65.

Hubel, D. H. and Wiesel, T. N. (1977). Functional architecture of macaque visual cortex.
Proceedings of the Royal Society of London B, 198:1 – 59.

102

BIBLIOGRAPHY

Hyvärinen, A., Hoyer, P. O., Hurri, J., and Gutmann, M. (2005). Statistical models of
images and early vision. In Proceedings of the Int. Symposium on Adaptive Knowledge
Representation and Reasoning (AKRR2005).

Hyvarinen, A., Hurri, J., and Hoyer, P. O. (2009). Natural Image Statistics. Springer, 1st
edition.

Lauritzen, S. L. (1996). Graphical models, volume 17. Clarendon Press.

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature, 521(7553):436–
444.

LeCun, Y., Huang, F. J., and Bottou, L. (2004). Learning methods for generic object
recognition with invariance to pose and lighting. In Computer Vision and Pattern
Recognition, 2004. CVPR 2004. Proceedings of the 2004 IEEE Computer Society Con-
ference on, volume 2, pages II–97. IEEE.

Lee, D. D. and Seung, H. S. (1999). Learning the parts of objects by non-negative matrix
factorization. Nature, 401(6755):788–91.

Lee, H., Battle, A., Raina, R., and Ng, A. (2007). Efficient sparse coding algorithms. In
Advances in Neural Information Processing Systems, volume 20, pages 801–08.

Lewicki, M. S. (1998). A review of methods for spike sorting: the detection and classifi-
cation of neural action potentials. Network: Computation in Neural Systems, 9(4):R53–
R78.

Lewicki, M. S. and Sejnowski, T. J. (2000). Learning overcomplete representations. Neu-
ral computation, 12(2):337–365.

Lücke, J. (2007). A dynamical model for receptive field self-organization in V1 cortical
columns. In Proc. International Conference on Artificial Neural Networks, LNCS 4669,
pages 389 – 398. Springer.

Lücke, J. (2009). Receptive field self-organization in a model of the fine-structure in V1
cortical columns. Neural Computation, 21(10):2805–45.

Lücke, J. and Eggert, J. (2010). Expectation truncation and the benefits of preselection in
training generative models. Journal of Machine Learning Research, 11:2855–900.

Lücke, J., Keck, C., and von der Malsburg, C. (2008). Rapid convergence to feature layer
correspondences. Neural Computation, 20(10):2441–2463.

Lücke, J. and Sahani, M. (2008). Maximal causes for non-linear component extraction.
Journal of Machine Learning Research, 9:1227–67.

103

BIBLIOGRAPHY

Luttinen, J., Raiko, T., and Ilin, A. (2014). Linear state-space model with time-varying
dynamics. In Joint European Conference on Machine Learning and Knowledge Dis-
covery in Databases, pages 338–353. Springer Berlin Heidelberg.

Mairal, J., Bach, F., Ponce, J., and Sapiro, G. (2010). Online learning for matrix factor-
ization and sparse coding. Journal of Machine Learning Research, 11.

Memisevic, R. (2011). Learning to relate images: Mapping units, complex cells and
simultaneous eigenspaces. pages 1–32.

Memisevic, R. (2013). Learning to relate images. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 35(8):1829–1846.

Memisevic, R. and Exarchakis, G. (2013). Learning invariant features by harnessing the
aperture problem.

Memisevic, R. and Hinton, G. (2007). Unsupervised Learning of Image Transformations.
2007 IEEE Conference on Computer Vision and Pattern Recognition, pages 1–8.

Memisevic, R. and Hinton, G. E. (2010). Learning to represent spatial transformations
with factored higher-order Boltzmann machines. Neural computation, 22(6):1473–92.

Michalski, V., Memisevic, R., and Konda, K. (2014). Modeling deep temporal depen-
dencies with recurrent grammar cells””. In Ghahramani, Z., Welling, M., Cortes, C.,
Lawrence, N. D., and Weinberger, K. Q., editors, Advances in Neural Information Pro-
cessing Systems 27, pages 1925–1933. Curran Associates, Inc.

Mohamed, S., Heller, K., and Ghahramani, Z. (2010). Sparse exponential family latent
variable models. NIPS Workshop.

Montesano, L., Dı́az, M., Bhaskar, S., and Minguez, J. (2010). Towards an intelligent
wheelchair system for users with cerebral palsy. IEEE Transactions on Neural Systems
and Rehabilitation Engineering, 18(2):193–202.

Murphy, K. P. (2012). Machine learning: a probabilistic perspective.

Neal, R. and Hinton, G. (1998). A view of the EM algorithm that justifies incremental,
sparse, and other variants. In Jordan, M. I., editor, Learning in Graphical Models.
Kluwer.

Nesterov, Y. et al. (2007). Gradient methods for minimizing composite objective function.
Technical report, UCL.

Olshausen, B. and Field, D. (1996). Emergence of simple-cell receptive field properties
by learning a sparse code for natural images. Nature, 381:607–9.

104

BIBLIOGRAPHY

Olshausen, B. and Millman, K. (2000). Learning sparse codes with a mixture-of-
Gaussians prior. Advances in Neural Information Processing Systems, 12:841–847.

Olshausen, B. A. (2000). Sparse coding of time-varying natural images. In Proc. of the
Int. Conf. on Independent Component Analysis and Blind Source Separation, pages
603–608. Citeseer.

Olshausen, B. A., Anderson, C. H., and Essen, D. C. V. (1993). A neurobiological model
of visual attention and invariant pattern recognition based on dynamic routing of infor-
mation. The Journal of Neuroscience, 13(11):4700–4719.

Olshausen, B. A. and Field, D. J. (1997). Sparse coding with an overcomplete basis set:
A strategy employed by V1? Vision Research, 37(23):3311–3325.

Pillow, J. W., Shlens, J., Chichilnisky, E., and Simoncelli, E. P. (2013). A model-based
spike sorting algorithm for removing correlation artifacts in multi-neuron recordings.
PloS one, 8(5):e62123.

Puertas, G., Bornschein, J., and Lücke, J. (2010). The maximal causes of natural scenes
are edge filters. In Advances in Neural Information Processing Systems, volume 23,
pages 1939–47.

Quiroga, R. Q., Nadasdy, Z., and Ben-Shaul, Y. (2004). Unsupervised spike detection and
sorting with wavelets and superparamagnetic clustering. Neural Comput., 16(8):1661–
1687.

Rauch, H. (1963). Solutions to the linear smoothing problem. IEEE Transactions on
Automatic Control, 8(4):371–372.

Rauch, H. E., Striebel, C., and Tung, F. (1965). Maximum likelihood estimates of linear
dynamic systems. AIAA journal, 3(8):1445–1450.

Rehn, M. and Sommer, F. T. (2007). A network that uses few active neurones to code
visual input predicts the diverse shapes of cortical receptive fields. Journal of Compu-
tational Neuroscience, 22(2):135–46.

Rey, H. G., Pedreira, C., and Quiroga, R. Q. (2015). Past, present and future of spike
sorting techniques. Brain research bulletin, 119:106–117.

Ringach, D. L. (2002). Spatial structure and symmetry of simple-cell receptive fields in
macaque primary visual cortex. Journal of Neurophysiology, 88:455–63.

Rosenblatt, F. (1958). The perceptron: a probabilistic model for information storage and
organization in the brain. Psychological review, 65(6):386.

105

BIBLIOGRAPHY

Sahani, M. (1999). Latent variable models for neural data analysis. PhD thesis, Caltech.

Sheikh, A.-S., Shelton, J. A., and Lücke, J. (2014). A truncated em approach for spike-
and-slab sparse coding. Journal of Machine Learning Research, 15:2653–2687.

Shelton, J. A., Bornschein, J., Sheikh, A.-S., Berkes, P., and Lücke, J. (2011). Select
and sample - a model of efficient neural inference and learning. Advances in Neural
Information Processing Systems, 24.

Shumway, R. H. and Stoffer, D. S. (1991). Dynamic linear models with switching. Jour-
nal of the American Statistical Association, 86(415):763–769.

Shumway, R. H. and Stoffer, D. S. (2010). Time series analysis and its applications: with
R examples. Springer Science & Business Media.

Sparrer, S. and Fischer, R. F. (2014). Adapting compressed sensing algorithms to discrete
sparse signals. In Smart Antennas (WSA), 2014 18th International ITG Workshop on,
pages 1–8. VDE.

Tenenbaum, J. B. and Freeman, W. T. (2000). Separating Style and Content with Bilinear
Models. Neural Computation, 12(6):1247–83.

Titsias, M. K. and Lázaro-Gredilla, M. (2011). Spike and slab variational inference for
multi-task and multiple kernel learning. In Advances in Neural Information Processing
Systems, volume 24.

Titsias, M. K. and Lázaro-Gredilla, M. (2011). Spike and slab variational inference for
multi-task and multiple kernel learning. In Shawe-Taylor, J., Zemel, R. S., Bartlett,
P. L., Pereira, F., and Weinberger, K. Q., editors, Advances in Neural Information Pro-
cessing Systems 24, pages 2339–2347. Curran Associates, Inc.

Turner, R. E. and Sahani, M. (2011). Bayesian Time Series Models, chapter Two prob-
lems with variational expectation maximisation for time-series models. Cambridge
University Press.

Ueda, N. and Nakano, R. (1998). Deterministic annealing EM algorithm. Neural Net-
works, 11(2):271–82.

van Hateren, J. H. and van der Schaaf, A. (1998). Independent component filters of natural
images compared with simple cells in primary visual cortex. Proceedings of the Royal
Society of London B, 265:359–66.

Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., and Manzagol, P.-A. (2010). Stacked
denoising autoencoders: Learning useful representations in a deep network with a local
denoising criterion. Journal of Machine Learning Research, 11(Dec):3371–3408.

106

BIBLIOGRAPHY

Wiskott, L., Fellous, J.-M., Krüger, N., and von der Malsburg, C. (1997). Face recogni-
tion by elastic bunch graph matching. IEEE Trans. on Pattern Analysis and Machine
Intelligence, 19(7):775–779.

Zhou, M., Chen, H., Ren, L., Sapiro, G., Carin, L., and Paisley, J. W. (2009). Non-
parametric bayesian dictionary learning for sparse image representations. In Advances
in neural information processing systems, pages 2295–2303.

Zylberberg, J., Murphy, J. T., and Deweese, M. R. (2011). A Sparse Coding Model with
Synaptically Local Plasticity and Spiking Neurons Can Account for the Diverse Shapes
of V1 Simple Cell Receptive Fields. PLoS Computational Biology, 7(10):e1002250.

107

	Title: Probabilistic Models for Invariant Representations and Transformations
	Abstract
	German version
	Contents
	Introduction
	Probabilistic Generative Models
	Expectation Maximization
	Sparse Coding

	Neural Networks
	Dynamical Systems
	Linear Dynamical Systems
	Non-Linear Dynamical Systems

	Overview

	Discrete Sparse Coding
	Introduction
	Mathematical Description
	Numerical Experiments
	Artificial Data
	Image Patches
	Analysis of Neuronal Recordings
	Audio Data

	Discussion

	Time-Invariant Discrete Sparse Coding
	Introduction
	Mathematical Description
	Numerical Experiments
	Spike Sorting
	Audio Data of Human Speech

	Discussion

	Learning Transformations with Neural Networks
	Introduction
	Background on Transformation Learning
	Deep Gated Autoencoder
	Experiments
	Image analogies

	Discussion

	Bilinear Dynamical Systems
	Introduction
	Mathematical Description
	Numerical Experiments
	Inference on artificially generated sequences

	Discussion

	General Discussion and Conclusions
	Discrete Sparse Coding
	M-step

	Time-invariant Discrete Sparse Coding
	M-step

	BiLinear Dynamical Systems
	Properties of Mutlivariate Gaussian Distributions
	Filtering - Forward Pass
	Smoothing - Backward Pass
	Parameter Estimation

	List of Figures
	Bibliography

