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Abstract

Sparse Coding algorithms with continuous latent variables have been the subject of a

large number of studies. However, discrete latent spaces for sparse coding have been

largely ignored. In this work, we study sparse coding with latents described by discrete



instead of continuous prior distributions. We consider the general case in which the

latents (while being sparse) can take on any value of a finite set of possible values; and

in which we learn the prior probability of any value from data. The studied approach

can be applied to any data generated by discrete causes; and it can be applied as an ap-

proximation of continuous causes. As the prior probabilities are learned, the approach

then allows for estimating the prior shape without assuming specific functional forms.

To efficiently train the parameters of our probabilistic generative model, we apply a

truncated EM approach (Expectation Truncation) that we modify to work with a gen-

eral discrete prior. We evaluate the performance of the algorithm by applying it to a

variety of tasks: (A) We use artificial data to verify that the algorithm can recover the

generating parameters from a random initialization. (B) We use image patches of nat-

ural images and discuss the role of the prior for the extraction of image components.

(C) We use extra-cellular recordings of neurons to present a novel method of analysis

for spiking neurons that includes an intuitive discretization strategy. And (D), we apply

the algorithm on the task of encoding audio waveforms of human speech. The diverse

set of numerical experiments presented in this work suggests that discrete sparse cod-

ing algorithms can scale efficiently to work with realistic datasets and provide novel

statistical quantities to describe the structure of the data.

1 Introduction

Sparse Coding (SC; Olshausen and Field, 1997) was proposed as the neural coding

strategy of simple cells in the primary visual cortex of the mammalian brain, and it has
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since become a prominent information encoding paradigm on a diverse set of applica-

tions. The arguments in favor of sparsity stem from multiple research directions: classi-

cal computer vision results (Field, 1994), observed sparsity in brain recordings (Hubel

and Wiesel, 1977), and the idea that the generative process of natural data consists of

sparsely presented structural elements (Olshausen and Field, 1997; Field, 1994). In this

work we focus on the latter idea, i.e., that it is common to perceive natural datasets

as a large set of distinct structural elements that appear infrequently. Pursuing distinct

selectivity of features in the data, as opposed to obfuscated overlapping responsibilities

in earlier Gaussian approaches (Hancock et al., 1992), SC has commonly been asso-

ciated with heavy tailed prior distributions. However, it is often argued that the SC

principle encourages discrete distributions or distributions with a discrete component

(Rehn and Sommer, 2007; Titsias and Lázaro-Gredilla, 2011; Goodfellow et al., 2012;

Sheikh et al., 2014) since continuous distributions do not send a clear “yes” or “no”

signal for the features that constitute a datapoint. Similarly, it is frequently pointed out

in the closely related field of compressive sensing (see, e.g., Donoho, 2006; Eldar and

Kutyniok, 2012; Sparrer and Fischer, 2014) that “hard” sparsity (in the form of an l0

sparsity penalty) is preferable to softer sparsity as it would be reflected by continuous

prior distributions.

Previous investigations of sparse coding with hard sparsity have been constrained

in different ways. Most frequently a prior with hand-set parameters was used, and the

prior remained unchanged during learning (e.g. Haft et al., 2004; Rehn and Sommer,

2007). For priors over discrete latents, the values the latents can take on are constrained

– most frequently to take on the values zero or one (e.g. Haft et al., 2004; Henniges
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et al., 2010; Bornschein et al., 2013). The aim of this study is the derivation of a

sparse coding algorithm for discrete latents without any of these constraints, i.e., an

algorithm applicable for sparse discrete latents that can take on any (finite) set of values.

Furthermore, we aim at learning the prior probability of any of these discrete values.

Such a general algorithm for discrete sparse latents can be applied in essentially two

ways: (A) To optimally infer parameters for data generated by sparse discrete latents;

(B) As discrete approximation of data generated by a continuous sparse prior. The

advantage of the former type of application is the ability to directly model the discrete

nature of the generating process and to infer its parameters including prior parameters

(while the approach is not limited to any particular values such as zero and one). The

advantage of the latter type of application is the absence of assumptions on the prior

shape. The generality of the approach allows a latent to take on a specific value with any

prior probability. While representing a discretized version of an underlying continuous

distribution, the generality will allow for learning any prior shape. Any continuous

sparse coding approach, in contrast, has to assume a specific functional form of the

prior, be it a Cauchy or Laplace prior (Olshausen and Field, 1997, and many more),

Student-t (Berkes et al., 2008) or another heavy-tail prior.

Overcoming the computational demand of training a general discrete sparse coding

model, which goes much beyond the complexity of earlier approaches, will be a main

challenge of this study. All non-Gaussian encodings of hidden variables typically pose

difficulties in Machine Learning. While efficient approaches have been developed for

approaches such as independent component analysis (Bell and Sejnowski, 1997; Bing-

ham and Hyvärinen, 2000) or non-negative matrix factorization (Lee and Seung, 1999),
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we usually face severe analytical intractabilities if data noise is taken into account. For

typical sparse coding models, we are therefore forced to apply approximation schemes

(e.g. Olshausen and Field, 1997; Lee et al., 2007; Berkes et al., 2008; Mairal et al., 2010)

to obtain efficient learning algorithms for parameter optimization. Several techniques

have been used to overcome that problem (Aharon et al., 2006) based on either sophis-

ticated point estimates of the posterior mode or sampling based methods (e.g. Berkes

et al., 2008). Each of these methods offers its own set of advantages and disadvantages.

Methods based on point estimates tend to be computationally efficient by avoiding the

intricacies of dealing with uncertainty in the posterior, for instance. Sampling based

methods, on the other hand, offer a more advanced description of the posterior but usu-

ally at a cost of either computational complexity or convergence speed. In the case of

discrete hidden variables, it is straight-forward to derive exact analytical solutions for

the optimization of model parameters within the expectation maximization (EM) ap-

proach (e.g. Haft et al., 2004; Henniges et al., 2010, for binary latents) but such exact

solutions scale very poorly with the number of latent dimensions. In order to overcome

poor scalability during learning and inference for sparse coding with binary latents,

factored or truncated variational approximations to a-posterior distributions have been

used (Haft et al., 2004; Bingham et al., 2009; Henniges et al., 2010). Like in the contin-

uous case, also sampling offers itself as a well-established and efficient approach (see,

e.g., Zhou et al., 2009, for a ‘hard’ sparsity model or Griffiths and Ghahramani, 2011,

for a non-parametric approach with binary latents). In practice, however, deterministic

factored or truncated approaches are frequently preferred (Haft et al., 2004; Zhou et al.,

2009; Titsias and Lázaro-Gredilla, 2011; Sheikh et al., 2014) presumably due to their
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computational benefits in high dimensional hidden spaces. For discrete latents, trun-

cated approximations to intractable posteriors (Lücke and Eggert, 2010; Puertas et al.,

2010; Exarchakis et al., 2012; Henniges et al., 2014) have represented an alternative to

sampling and factored variational methods. Like sampling (but unlike factored varia-

tional methods), truncated approximations do not make the assumption of a-posteriori

independence. Like factored approaches (but unlike sampling), truncated approxima-

tions have been shown to be very efficient also in spaces with a very large number of

hidden variables (Shelton et al., 2011; Sheikh et al., 2014). Truncated approaches can be

expected to represent very accurate approximations if posterior masses are concentrated

on relatively few states, which makes them well suited for our purposes.

To demonstrate the newly derived approach and its capabilities, we use different

types of data in order to validate the approach and to demonstrate its different types of

applicability. First, we demonstrate the effectiveness of the training scheme on artificial

data to better expose the intricacies of the learning procedure. We continue by testing

the model with different sets of discrete values on natural images and aim at inferring

prior shapes with a minimal scientific bias, in the course of this work we are also veri-

fying the validity of the model by replicating and confirming preliminary earlier results

(Henniges et al., 2010; Exarchakis et al., 2012) as special cases of our approach. Fur-

thermore, we perform an analysis of data captured through extra-cellular recordings

of spiking neurons using discrete latent values that account for background activity as

well as potential decays that occur in spike trains. Common methods of analysis of

extra-cellular recordings use intricate pipelines for spike detection and identification

and often rely on Gaussian priors to characterize a spike even though the spike is per-
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ceived as a discrete quantity. Here, we propose a model that explicitly takes into account

the discrete nature of spikes as well as their varying amplitudes, which are due to spike

trains, as well as potential overlaps with spikes of nearby neurons. Finally, we apply

the model on a feature extraction task from human speech using the raw waveform.

The discrete prior we learn in this case can be taken to model an underlying continuous

prior without the requirement to make assumptions on the prior shape. On the other

hand, as speech makes use of resonances in the vocal tract, we can also expect a certain

degree of discreteness in the underlying generation process which would also motivate

the application of a model with discrete latents.

In Sec. 2 we will define the model and derive a learning algorithm based on trun-

cated EM. In Sec. 3 we apply the model to artificial data (Sec. 3.1), to image patches

(Sec. 3.2), to extra cellular neural recordings (Sec. 3.3), and to auditory data (Sec. 3.4).

Secs. 3.1 ad 3.2 are examples of discrete hidden causes, and Secs. 3.3 and 3.4 are ex-

amples for how the generality of the approach can be used to learn prior shapes for

presumably rather continuous latents. Sec. 4 discusses the model, algorithm and nu-

merical results.

2 Model Definition

Consider a set, Y , of N independent datapoints ~y(n), with n = 1, . . . , N , where ~y(n) ∈

RD. For these data the studied learning algorithm seeks parameters Θ∗ = {W ∗, σ∗, ~π∗}

that maximize the data log-likelihood:

L (Y|Θ) = log
N∏
n=1

p
(
~y(n)|Θ

)
=

N∑
n=1

log p
(
~y(n)|Θ

)
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Sparse coding models are latent variable models and therefore the likelihood is defined

as a function of unobserved random variables as follows

L (Y|Θ) =
N∑
n=1

log p
(
~y(n)|Θ

)
=

N∑
n=1

log
∑
~s

p
(
~y(n)|~s,Θ

)
p (~s|Θ) (1)

where the latent variables ~s are taken to have discrete values, and where the sum
∑

~s

goes over all possible vectors ~s, i.e., over all possible combinations of discrete states.

Let ~s be of length H , i.e. ~s = (s1, . . . , sH)T , where each element sh can take on one of

K discrete values φk ∈ R, i.e. ~sh ∈ Φ = {φ1, . . . , φK}. For such latents, we can define

the following prior:

p(~s |Θ) =
H∏
h=1

K∏
k=1

π
δ(φk=sh)
k , with

K∑
k=1

πk = 1, (2)

where δ (φk = sh) is an indicator function which is one if and only if φk = sh and

zero otherwise. As for standard sparse coding, Equation 2 assumes independent and

identical distributions for the latents sh. The prior will be used to model sparse activity

by demanding one of the values in Φ = {φ1, . . . , φK} to be zero and the corresponding

probability to be relatively high. We will refer to the set of possible values Φ as a

configuration. An example is to choose configuration Φ = {0, 1}, which reduces (using

π = π2 and (1−π) = π1) the prior (2) to the Bernoulli prior p(~s |Θ) =
∏H

h=1 π
sh (1−

π)1−sh (as used for binary sparse coding, Haft et al., 2004; Henniges et al., 2010;

Bornschein et al., 2013). The notation used in (2) is similar to a categorical distribution

but applies for latents with any values φk with any probabilities πk. Its form will be

convenient for later derivations.

Having defined the prior (2), we assume the observed variables ~y = (y1, . . . , yD)T

to be generated as in standard sparse coding, i.e., we assume Gaussian noise with the
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mean set by a linear superposition of the latents:

p (~y |~s,Θ) = N
(
~y;W~s, σ21

)
(3)

with an isotropic covariance, σ21 , and mean W~s. We call the data model defined by (2)

and (3) the discrete sparse coding (DSC) data model.

Given a set of datapoints ~y(1), . . . , ~y(N) and the DSC data model, we now seek pa-

rameters Θ = (~π,W, σ) that maximize the likelihood (1). We derive parameter up-

date equations using Expectation Maximization in its free-energy formulation (Neal and

Hinton, 1998). In our case, exact EM update equations can be derived in closed-form

but the E-step scales with the number of hidden states O(KH), making the algorithm

computationally intractable for large H .

In order to derive computationally tractable approximations for parameter optimiza-

tion, we approximate the intractable a-posteriori probabilities p(~s | ~y,Θ) by a truncated

distribution:

p(~s | ~y(n),Θ) ≈ q(n)(~s; Θ) =
p(~s | ~y(n),Θ)∑

~s′∈K(n) p(~s′ | ~y(n),Θ)
δ(~s ∈ K(n)), (4)

where K(n) is a subset of the set of all states, K(n) ⊆ {φ1, . . . , φK}H , and δ(~s ∈ K(n))

is again an indicator function (one if ~s ∈ K(n) and zero otherwise).

While truncated approximations have been shown to represent efficient approxi-

mation of high accuracy for a number of sparse coding generative models (Lücke and

Eggert, 2010; Bornschein et al., 2013; Henniges et al., 2014), they have so far only

been applied to binary sparse coefficients. Here, we will generalize the application of

truncated distributions to sparse latents with any (finite) number of discrete states.

Considering (4), we can first note that the assumptions for applying Expectation
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Truncation (ET; Lücke and Eggert, 2010) are fulfilled for the DSC model (2) and (3)

such that we can derive a tractable free-energy given by:

F (q,Θ) =
∑
n∈M

[∑
~s

q(n)
(
~s; Θold

) (
log p

(
~y(n), ~s |Θ

)) ]
+H (q) (5)

where q(n)
(
~s; Θold

)
is given in (4) and where H(q) is the Shannon entropy. Notice

that the summation over datapoints is no longer over the index set {1, . . . , N} but over

a subset M of those datapoints that are best explained by the model. Since we use a

truncated posterior distribution we expect that we do not explain well the entire dataset

but rather a subset of it of size
∑

~s′∈K(n) p(~s′|Θ)/
∑

~s p(~s|Θ). To populate M we use

the datapoints with the highest value for
∑

~s∈K(n) p
(
~s, ~y(n)|Θold

)
. It can be shown for a

large class of generative models (including the DSC model) (Lücke and Eggert, 2010),

that maximizing the free-energy (5) then approximately maximizes the likelihood for

the full dataset.

To get the optimal parameters for the model Θ∗ = {~π∗,W ∗, σ∗}we take the gradient

of the free energy and seek the values of the parameters that set it to 0:

∇F (q,Θ) = ∇
∑
n∈M

[ 〈
log p

(
~y(n)|~s,Θ

)〉
q(n) + 〈log p (~s|Θ)〉q(n)

]

= ∇
∑
n∈M

[〈
−D

2
log
(
2πσ2

)
− σ2

2
‖~y(n) −W~s‖2

2

〉
q(n)

+

〈∑
h,k

δ (φk, sh) log πk

〉
q(n)

]
= 0 ,

where we denote with 〈g (~s)〉q(n) the expectation value of a function g (~s) under the

distribution q(n)
(
~s; Θold

)
. For W and σ the results are

∇WF (q,Θ) = 0⇔ W ∗ =

(∑
n∈M

~y(n)
〈
~sT
〉
q(n)

)(∑
n∈M

〈
~s~sT
〉
q(n)

)−1

(6)
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∇σF (q,Θ) = 0⇔ σ∗ =

√√√√ 1

|M|D

〈∑
n∈M

‖~y(n) −W~s‖2
2

〉
q(n)

(7)

where |M| is the size of the setM.

The prior parameter πk can be obtained in the same way if one introduces the con-

straint to the free energy of having
∑

k πk = 1 to maintain the normalized prior during

the gradient procedure.

∇πkF (q,Θ) = 0⇔ π∗k =
〈∑h δ (~sh, k)〉q(n)〈∑

k,h δ (~sh, k)
〉
q(n)

(8)

The parameter update equations (6), (7), and (8) require the computation of ex-

pectation values 〈g (~s)〉q(n) (the E-step). By inserting the truncated distribution (4) we

obtain:

〈g (~s)〉q(n) =
∑
~s

q(n) (~s) g (~s) =

∑
~s∈K(n) p

(
~s, ~y(n)|Θold

)
g (~s)∑

~s∈K(n) p (~s, ~y(n)|Θold)
(9)

where g (~s) is a function of the hidden variable ~s (see parameter updates above). As

can be observed, the expectation values are now computationally tractable if |K(n)| is

sufficiently small. At the same time, we can expect approximations with high accuracy

if K(n) contains the hidden variables ~s with the large majority of the posterior mass.

In order to select appropriate states K(n) for a datapoint ~y we use the joint of each

datapoint and the singleton posterior variables, i.e. variables that have only one non-

zero dimension, to identify the features that are most likely to have contributed to the

datapoint and only include those preselected states as in the posterior estimation. More

formally, we define

K(n) =
{
~s | ∀i 6∈ I (n) : si = 0 and ‖~s‖0 ≤ γ

}
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where ‖ · ‖0 is the non-zero counting norm and where I (n) is an index set that contains

the indices of the H ′ basis functions that are most likely to have generated the datapoint

~y(n). The index set I (n) is in turn defined using a selection (or scoring) function. For

our purposes, we here choose a selection function of the following form:

Sh
(
~y(n)
)

= max
φ∈Φ

{
p
(
sh = φ, s

�h
= 0, ~y(n)|Θold

)}
where s

�h
:= {si : i ∈ {1, . . . , H} \ {h}}. Sh gives a high value for the index h if

the generative field in the h-th column of W contains common structure with the dat-

apoint ~y(n) regardless of the discrete scaling that the model provides. In other words,

the selection function uses the best matching discrete value for each generative field as

for a comparison with the other generative fields. The H ′ fields with the largest values

of Sh
(
~y(n)
)

are then used to construct the set of states in K(n). States can be selected

in different ways including scalar products (Shelton et al., 2011). Joint probabilities

are preferable as they are defined by the generative model itself (including current val-

ues for noise and priors), which has motivated our choice above. Using appropriate

approximation parameters γ and H ′, the sets K(n) can contain sufficiently many states

to realize a very accurate approximation but sufficiently few states in order to warrant

sufficiently efficient scalability with H . Crucially, H ′ can maintain a small value for

many types of data while H increases.

The M-step equations (6) to (8) together with approximate E-step equations (9) us-

ing the truncated distributions (4) represent a learning algorithm for approximate maxi-

mization of the data likelihood under the discrete sparse coding model (Equations 2 and

3). We will refer to this algorithm as the Discrete Sparse Coding (DSC) algorithm.
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3 Numerical Experiments

We test the DSC algorithm on four different types of data: artificial data, natural images,

extra-cellular neuronal recordings, and audio data of human speech. The artificial data

are generated using the DSC generative model and they are used to confirm the ability

of the DSC algorithm to learn the parameters of the generative model. The other three

types of data are commonly encountered in real world scientific tasks. There we show

that the DSC algorithm is capable of extracting interesting structure from the data while

using discrete latents and small sets of parameters. Notably, the developed algorithm

will enable learning of the K parameters of the prior distribution (alongside noise and

generative fields).

Similarly to the vast majority of generative models trained with variants of the EM

algorithm the DSC algorithm can converge to a local optimum solution since EM is

in general a gradient approach. In the case of artificial data, where the ground truth is

known, we have observed that an annealing schedule can make a global optimum con-

vergence more likely. In the absence of an annealing schedule the algorithm converges

to qualitatively similar parameter sets, and often the global optimum, quite early. Since

we do observe an improvement in convergence properties though we wish to utilize

the same techniques in other datasets, where the ground truth is unknown. In order to

identify the necessary annealing parameters, we increase them sufficiently to maintain

the highest level of variability of the parameters without breaking the algorithm initially

and proceed to slowly decay the annealing parameters to the point of no annealing in

the first half of the training time. It is unlikely that the exact same annealing scheme

have the same effect on a different dataset, however, the procedure to identifying the
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annealing parameters remains the same across all applications.

In the definition of a DSC algorithm we encounter the choice of latent space dimen-

sionality as in many other feature learning algorithms we encounter the choice of latent

space dimensionality. In the case of artificial data the dimensionality is already known

is set to the ground truth for learning to ensure correct extraction of the parameter set.

In the case of realistic datasets we tend to use an overcomplete latent representation to

illustrate the ability of the algorithm to extract a rich dictionary from the data.

3.1 Artificial Data

We used a linear bars test (Hoyer, 2002; Henniges et al., 2010) to evaluate the ability of

the algorithm to recover optimal solutions for the likelihood. We generated N = 1 000

datapoints using a DSC data model configuration with states Φ = {−2,−1, 0, 1, 2} and

parameters ~π = (0.025, 0.075, 0.8, 0.075, 0.025) for the prior respectively. For the pa-

rameters W ∈ {0, 10}H×D, we used H = 10 different dictionary elements of D = 25

observed dimensions. To simplify the visualization of such high dimensional observa-

tions, we choose each dictionary element to resemble a distinct vertical or horizontal

bar when reshaped to a 5 × 5 image, with the value of the bar pixels to be equal to 10

and the background 0, see Figure 1 C. The resulting datapoints were generated as linear

superposition of the basis functions, scaled by a corresponding sample from the prior.

Following the DSC generative model, we also added samples of a mean free Gaussian

noise with a standard deviation of σ = 2 to the data, example datapoints can be seen in

Figure 1 A.

Using the generated datapoints, we recovered the ground truth parameters by train-
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B

C

D E

Figure 1: Results from training on artificial images using a DSC model with a con-

figuration Φ = {−2,−1, 0, 1, 2}. A Example datapoints sampled from the generative

model. B The evolution of the dictionary over iterations. Iteration 0 shows the initial

values and iteration 100 the dictionary after convergence, no interesting changes occur

after iteration 25. C The ground truth values for the dictionary. D The learned prior pa-

rameters (green) compared to the ground truth prior parameters (blue). E The evolution

of the model standard deviation (solid line) compared to the ground truth(dashed line).

Notice that due to the symmetric state configuration the learned dictionary has identical

structure with the ground truth but not necessarily the same sign.
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ing the model as described in Section 2. To ensure that the maximum likelihood parame-

ters are the same as the generating ones we train the model with the same latent variable

dimensionality H = 10 as in the generating process. We initialized the standard devi-

ation of the noise model with the standard deviation of the observed variables σy, the

parameters W with the mean datapoint plus Gaussian noise with standard deviation of

σy/4, and the prior parameters where initialized such that p (~sh = 0) = (H − 1)/H ,

and p (~sh 6= 0) was drawn from a uniformly random distribution and scaled to satisfy

the constraint that
∑

h p (~sh) = 1. The approximation parameters for the truncated

approximation scheme were H ′ = 7, and γ = 5.

We ran the DSC algorithm for 100 iterations using an annealing scheme described in

(Ueda and Nakano, 1998; Sahani, 1999) with the value of the β parameter to be equal

to 2 for the first 10 iterations and linearly decreased to 1, no annealing, by iteration

40. Furthermore, to avoid early rejection of datapoints we used all the datapoints for

training for the first 60 iterations and then proceeded to decrease the number of training

datapoints linearly to |M | by iteration 90.

After convergence of the algorithm, the learned parameters for σ and ~π were ob-

served to match the generating parameters with high accuracy, see Figure 1 D, and E.

For the parameters W , we don’t recover the exact ground truth parameters, see Figure

1 B, and C. The reason is that in this configuration of the model, and all symmetric

ones, there are multiple maximum likelihood solutions since it is equiprobable for a

dictionary element to contribute with either sign. Furthermore, we noticed that some

configurations of the algorithm are more likely to converge to locally optimal solutions

than others.
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These results show that we can successfully learn a correct dictionary for the data

while at the same time learning a value that parametrizes uncertainty of the discrete

coefficients and the scale of the isometric noise of the observed space.

3.2 Image Patches

Sparse Coding (Olshausen and Field, 1996) was originally proposed as a sensory cod-

ing model for simple cell receptive fields in the primary visual cortex which was able

to learn biologically plausible filters from natural image patches. Since then there has

been a lot of effort in improving the original SC model, including approaches using

alternatives to the originally suggested prior distributions. While by far most work kept

focusing on continuous priors, discrete priors in the form of Bernoulli priors for bi-

nary latents have been investigated previously (Haft et al., 2004, Henniges et al. 2010,

and also compare non-parametric Bayesian approaches such as Griffiths and Ghahra-

mani, 2011). Furthermore, preliminary work for this study has investigated symmetric

priors for three states (-1,0,1) (Exarchakis et al., 2012). We will use results of earlier

approaches (Henniges et al., 2010; Exarchakis et al., 2012) and of their application to

image patches as a further verification of the DSC algorithm before we proceed to the

more general case for this data domain.

The data. The data set we used for DSC were a selection of images with no artificial

structures taken from the van Hateren image data set (van Hateren and van der Schaaf,

1998). We randomly selected N = 200 000 image patches of size 16 × 16, thus set-

ting the dimensionality of the data to D = 256 dimensions. As preprocessing, we first
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whitened the data using PCA-whitening and then we rotated the whitened data back to

the original coordinate space using the set of highest principle components that corre-

sponded 95% of the data variance, this technique is commonly referred to as zero-phase

component whitening or ZCA (Bell and Sejnowski, 1997).

Algorithm details. As in most SC variants, we were concerned with introducing an

algorithm that is overcomplete in the absolute number of dimensions. It is worth noting

at this point that the dimensionality of the model is not invariant of the model structure

so for different configurations the size of the hidden space should also change in order

to achieve the same level of accuracy. However, it is clearer to expose this behavior if

we use models with constrained dimensionality and we do that by fixing the number of

hidden dimension for all tasks to H = 300. To maintain similar results across different

configurations of the model we use the same training scheme. We ran the DSC algo-

rithm for 200 iterations. To avoid local optima we again used deterministic annealing,

as described in (Ueda and Nakano, 1998; Sahani, 1999), with an initial temperature for

T = 2 that is decreased linearly to T = 1 between iterations 10 and 80. Furthermore,

in order not to reject any datapoints early in training we used the full data set for the

first 20 iterations and linearly decreased it to the set of best explained datapoints M

between iteration 20 and 60. In all cases, we used the same approximation parameters

H ′ = 8 and γ = 5 to maintain a comparable effect of the approximation on the results.

Discrete Sparse Coding with binary latents

The binary configuration of DSC (bDSC), with Φ = {0, 1}, which recovers the Binary

Sparse Coding (BSC) algorithm shows emergence of Gabor-like receptive fields as ex-
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pected from (Henniges et al., 2010). The achievements highlighted in (Henniges et al.,

2010) were primarily the high dimensional scaling of the latent space, inference of spar-

sity (a notable difference to Haft et al., 2004), and the recovery of image filters with

statistics more familiar to those of primates (Ringach, 2002) than earlier algorithms (Ol-

shausen and Field, 1997), even though later work reportedly improved on that further

(Bornschein et al., 2013) (also compare Lücke, 2007, 2009; Rehn and Sommer, 2007;

Zylberberg et al., 2011).

Learned Basis
A

C
Crowdedness

B
Standard Deviation

Iteration Iteration

Figure 2: Results from training on natural images using the binary DSC model, Φ =

{0, 1}. A Learned dictionary elements. The framed dictionary elements are considered

as center surround. B Model uncertainty parameter over EM iterations. C Average

number of non zero coefficients “crowdedness” over EM iterations.

By applying bDSC we reproduce earlier results, i.e., we recover a dictionary with
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Gabor-like and center surround filters, in a high dimensional latent space (H = 300),

Figure 2 summarizes the obtained results. The work in (Henniges et al., 2010) showed

results with an even higher number of observed and latent dimensions, however, the bi-

nary configuration of DSC has the same algorithmic complexity as BSC and it is trivial

to show that DSC can scale to the same size. Here, we chose the lower dimensional

observed and latent spaces to facilitate later comparison to the computationally more

demanding DSC applications with more latent states. Also note that (Henniges et al.,

2010) used a difference-of-Gaussian preprocessing instead of ZCA whitening chosen

here and this may have an effect on the resulting parameters (compare Bornschein et al.,

2013).

Discrete Sparse Coding with ternary latents

The next more complex DSC configuration we tried is the ternary case (tDSC) in which

we use the configuration Φ = {−1, 0, 1}. Unlike bDSC, tDSC is symmetric in the

state space and therefore shares more features with popular SC algorithms which utilize

symmetric priors. However, in this work we study symmetry only in terms of the states

(i.e., −1, 0, 1) but allow different prior probabilities for each of these states (unlike

Exarchakis et al., 2012, which assumed the same probabilities for states −1, and 1).

The approximation parameters and training schedule were set to be identical to the

bDSC in order to facilitate the comparison of the two configurations.

As the results in Figure 3 C show, tDSC converges to an almost symmetric prior,

even with non-symmetric initializations of the prior probability of non zero states. For

the DSC data model with configuration Φ = {−1, 0, 1} this means that any generative
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field is similarly likely as its negative version.

Learned Basis
A

DStandard Deviation CrowdednessCB Prior

Iteration Iteration

Figure 3: Results from training on natural images using the ternary DSC model

,Φ = {−1, 0, 1}. A Learned dictionary elements. The framed dictionary elements are

considered as center surround. B Learned prior parameters. C Model uncertainty pa-

rameter over EM iterations. D Average number of non zero coefficients “crowdedness”

over EM iterations.

Discrete Sparse Coding with multiple positive latents

We now use a DSC configuration with a greater number of discrete states, and use

Φ = {0, 1, 2, 3, 4} to investigate prior probability structures that are not elucidated by

the bDSC and tDSC models. In particular, we are interested in identifying patterns in

the slope of the prior as defined by a uniform discretization of their scale. Once more,

the algorithmic details regarding this run can be viewed at the beginning of section 3.2

and they remain the same across all configurations. The only difference across the three

21



different tests is the configurations of the algorithms.

The learned prior at convergence is monotonically decreasing with the increasing

values of the states suggesting that states of higher value have an auxiliary character.

Furthermore, the shape of the prior distributions reinforces the argument for unimodal

distributions. The increased number of states also shows a decreased scale for the noise

model at convergence suggesting, once more, that an increased number of states pro-

vides a better fit for the data, compare to Figure 3 and Figure 2.

A

DStandard Deviation Crowdedness

Learned Basis

CPrior parameteresB

Iteration Iteration

Figure 4: Results from training on natural images using the DSC model with a a config-

uration Φ = {0, 1, 2, 3, 4}. A Learned dictionary elements. The framed dictionary ele-

ments are considered as center surround. B Prior parameters at convergence. C Model

uncertainty parameter over EM iterations. D Average number of non zero coefficients

“crowdedness” over EM iterations.

When compared with the learned dictionaries of the two earlier configurations, Fig-
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ures 2 A and 3 A, the dictionary we learn for a higher number of positive discrete

states, Figure 4 A, appears to are more localized, i.e. the dictionary elements resem-

ble wavelets with a smaller support. This observation suggests that each of the learned

generative fields is responsible for more fine detail structure in an image patch than

a generative field by the binary and ternary configurations. Additionally, in Figure 4

we see that the sparsity decreases when compared with the ternary or binary configura-

tion. Meaning that more generative fields are used on average to optimally, in likelihood

terms, recreate an image. Which is to be expected since having each generative field be-

ing responsible for a smaller part of the image means that more generative fields would

now be necessary on average to explain an image.

Discrete Sparse Coding with assymetric and non-uniform latents

For our last experiment, we used a configuration that allows for positive and nega-

tive values but the chosen prior values are not symmetrical around zero (unlike tDSC).

Furthermore, we use a scaling of values that tiles the prior space with non uniform

increments. The contrast response of pattern-sensitive neurons, e.g., in the visual sys-

tem, has been observed to be non-linear (Heeger, 1992; Carandini and Heeger, 2012)

with their range of responses being asymmetric with regard to the spontaneous response

(Kandel et al., 1991). As a result, the distribution of contrast discrimination levels is

non-uniform (Legge and Foley, 1980; Watson and Solomon, 1997). On the technical

side, the observed non-linear and non-uniform contrast encodings have been used to

provide technical improvements for the JPEG image encoding (Daly, 1990; Malo et al.,

2000; Taubman and Marcellin, 2002; Malo et al., 2006). Here, we model assymetric
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and non-uniform encoding using DSC with a configuration Φ = {−1, 0, 2, 6}, which

we will refer to as assymetric DSC (aDSC).

Again we maintain the same data set, same number of generative fields, and same

training procedure as used for the experiments above. Figure 5 show the learned param-

eters after convergence. Again we observed many Gabor-like and some more globular

generative fields (Fig. 5A). The learned probabilities of the prior values (Fig. 5B) are

notably assigning more mass to positive values than to negative values. The prior is

thus neither positive only nor symmetric around zero.

Learned Basis
A

DStandard Deviation CrowdednessCPrior parameteresB

Iteration Iteration

Figure 5: Results from training on natural images using the DSC model with a a config-

uration Φ = {−1, 0, 2, 6}. A Learned dictionary elements. The framed dictionary ele-

ments are considered as center surround. B Prior parameters at convergence. C Model

uncertainty parameter over EM iterations. D Average number of non zero coefficients

“crowdedness” over EM iterations.
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Quantitative Comparison of Generative Fields

Finally, let us quantitatively compare the properties of the image models learned us-

ing the different configuration of prior values above. Figure 6, shows comparisons of

different measures of the learned model parameters. As any of the experiments on im-

age patches (especially those for dDSC and aDSC) required extensive computational

resource, Figure 6 does only take into account the experiments of Figures 2 to 5 and no

repeated runs. However, repeated experiments for bDSC in this and previous studies

(Henniges et al., 2010) show only small variations of individual runs compared to the

differences between the four configurations as analyzed in Figure 6.

Figure 6A compares the variances inferred by the different configurations (in de-

creasing order). The variance decreases with increasing number different discrete val-

ues (size of Φ). If a generative field can be scaled by different non-zero factors it can

be better reconstruct any given data point. Crowdedness (inverse sparsity) increases

with increasing numbers of values (Figure 6B). In other words, more fields are used on

average if many factors are available of any generative field. One explanation is that it

becomes easier, e.g., for dDSC to add fields with small factors for better reconstruction.

Furthermore, we observed a tendency to more localized generative fields for aDSC and

dDSC, such that more fields are required to reconstruct extended structures.

To analyze the learned generative fields more closely, we matched them using Ga-

bor functions (compare Ringach, 2002) and difference of Gaussians (DoG) functions.

Based on the matching error, we then determined the number of DoG fields (Bornschein

et al., 2013; Dai et al., 2013), which well correspond to the ‘globular’ fields described

by Ringach (2002). We used the generative fields directly as we are here primarily in-
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terested in the comparison between the models, and as the classification into Gabor-like

and globular fields has not been observed to change when estimated receptive fields

instead of generative fields were used (compare Bornschein et al., 2013; Dai et al.,

2013). Figure 6C shows strong differences among the different configurations and un-

like Figure 6A,B no monotonous dependency on the number of configuration values

can be observed. Notably, the asymmetric prior (aDSC), which can be motivated by

neurophysiological experiments shows the highest percentage of globular fields. High

percentages of globular fields are, on the other hand, often observed in vivo (Ringach,

2002; Usrey et al., 2003; Niell and Stryker, 2008). The observed percentages are lower

than, e.g., those measured by Ringach (2002) but we here investigate a relatively small

number of fields (compare Bornschein et al., 2013, who observe increased percentages

with overcompleteness). Also note that non-linear superposition properties of data com-

ponents are likely to play a role for visual data (Bornschein et al., 2013). Finally, we

measured the localization of generative fields (Figure 6D). We used the matched Ga-

bor functions or DoG functions and computed the approximate area of the patch they

covered1. The aDSC configuration does notably result in the most localized generative

fields. Still it is using on average fewer components than dDSC for reconstruction. The

tDSC configuration results in the least localized generative fields.

1We first used the classification into Gabor-like of DoG-like fields. Then we used (2σx 2σy) as the

area covered by a Gabor field with σx and σy parameterizing the Gaussian envelop of the matched Gabor.

For a DoG field we used (2σout)
2 with σout being the larger of standard deviations of the two Gaussians

of the DoG function.
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Standard Deviation Crowdedness

Avg Generative Field Support
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Figure 6: Quantitative analysis and comparison of components extracted from image

patches. A Estimated noise σ using discrete sparse coding with different configurations

(ordered in descending order). bDSC shows the highest level of noise followed by tDSC

and aDSC. dDSC shows the lowest noise level, i.e., the best average reconstruction. B

Crowdedness (inverse sparsity) in terms of the average number of components used to

reconstruct an image patch. bDSC uses the least components followed by tDSC and

aDSC while dDSC uses most components. C Fraction of globular fields. tDSC shows

the lowest number of globular fields and aDSC the highest number. D Localization of

fields (surface size of generative field support - relative to bDSC). The tDSC fields are

localized the least while aDSC shows the highest average localization.
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3.3 Analysis of Neuronal Recordings

Information in the brain is widely considered to be processed in the form of rapid

changes of membrane potential across neurons, commonly know as action potentials

or spikes. This activity is often viewed as a natural form of discretization of continuous

sensory stimuli for later processing in the cortex.

A cost effective way to study the behavior of these neurons and the spike generating

process is to perform extra-cellular (EC) electrode recordings. However, when one

observes the data obtained from an extra-cellular recording one sees various forms of

noise either structured, for instance spikes from remote neurons, or unstructured, such

as sensor noise. In this setting, we expect the DSC algorithm to provide interesting

insights on the analysis of neural data. Using, different configurations one can either

explain overlapping spikes, or as we attempt to show here, use the discrete scaling

inherent to the algorithm to explain background spikes, i.e. spikes of remote neurons,

and high scaling to explain relevant/near spikes, or the amplitude decay of spike trains

using multiple high values.

In this work we will present a study of neural data using the DSC algorithm. To be

concise, we will focus on a single configuration of DSC that we believe best elucidates

most of the features of the algorithm.

Dataset. We used the dataset described in (Henze et al., 2000, 2009). The dataset

contains simultaneous intra-cellular and extra-cellular recordings from hippocampus

region CA1 of anesthetized rats. We took the first EC channel of recording d533101,

sampled at 10 kHz, and band-pass filtered it in the range of 400 − 4000 Hz and then
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we sequentially extracted 2ms patches of the filtered signal with an overlap of 50%.

We used those patches as the training datapoints for our algorithm. We also use the

intra-cellular (IC) recording provided by the dataset to better illustrate the properties of

the uncertainty involved in EC recordings.

Training. We used a DSC configuration with 4 discrete states, Φ = {0, 1, 6, 8}, to

describe the structure of the data. This configuration was selected using the intuition

that spikes of distant neurons will have roughly the same shape as spikes of the relevant

neuron but at a smaller scale and therefore correspond to state 1 and the states 6, and 8

will explain features of the relevant neuron or nearby neurons for which we allow some

variation in strength. Note that a configuration of Φ = {0, 0.5, 3, 4}would be equivalent

because of the unnormalized columns of W . To choose the best model configuration

we could use the variance at convergence as a selection criterion, however, it is useful

to make assumptions on a configuration by observing the data. The number of hidden

variables, H = 40, was selected to be slightly higher than the number of observed

variables, D = 20, which in turn correspond to 2ms of recording sampled at 10 kHz.

The approximation parameters for the ET algorithm were set to H ′ = 6 and γ = 4.

We initialize the noise scale σ as the mean standard deviation of the observed vari-

ables, the columns of W using the mean of the datapoints plus a Gaussian noise with

standard deviation σ/4, and the parameters ~π we initialized such that p (sh = 0) =

(H − 1) /H and p (sh 6= 0) is sampled from a uniformly random distribution under the

constraint that
∑

h p (sh) = 1.
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Figure 7: A The learned dictionary. Some of the basis develop as extra-cellular record-

ings of spikes similar to those seen in earlier literature. We also discover components

that can only be attributed to structured noise, e.g. from distant neurons. B ~W12, On the

x-axis you see the duration in ms and y-axis the voltage in mV. C The evolution of the

model σ next to the original data std (dashed). D The learned prior parameters ~π

We let the algorithm run for 200 EM iterations using a deterministic annealing

schedule (Ueda and Nakano, 1998; Sahani, 1999) with β = 2 for the first 10 itera-

30



tions and proceed to linearly decreasing it to β = 1 by iteration 80. Furthermore, in

order to avoid early rejection of interesting datapoints we force the algorithm to learn

on all datapoints for the first 60 iterations and then decrease the number of datapoints

to |M| by iteration 100, always maintaining the datapoints with the highest value for∑
~s∈K(n) p(~yn, ~s), see Section 2.

In Figure 7 A, we see the dictionary as it was formed at convergence. There we

notice potential shifts similar to the ones reported in (Henze et al., 2000) for the extra-

cellular recordings but also other elements that are more similar to finer details of poten-

tial changes. Such a decomposition of activity into district subspaces has been shown

to improve classification in many tasks and it could prove useful in identifying spiking

activity of different neurons in spike sorting systems. One should also take into account

that since there is no built-in temporal invariance in the model and there is no spike

alignment previously performed in the data, we sometimes observe similar features to

appear shifted across the time axis. These temporal shifts emerge as the DSC algorithm

addresses temporal alignment by populating the dictionary with time shifted elements.

Figure 7 C shows the evolution of the model noise scale σ compared to the total stan-

dard deviation of the original signal. As expected, once our model accounts for the

spikes, of near or distant neurons, the noise in the signal becomes smaller. It is worth

noting at this point the correlation of σorig with the presence of spikes in the signal.

Figure 7 D shows the learned prior. The result suggests that most spikes are active with

a coefficient of 1 suggesting that they belong to the background noise (modeling distant

spike events received by the electrode), then the most active coefficient is 6 suggesting

that the dictionary element describes firing scaled down, perhaps due to a spike burst,
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and the lowest probability latent state is 8 which was intended to model spikes at their

highest intensity.

To illustrate how well we were able to fit the data we reconstructed the extra-cellular

signal using the latent variables values with highest (approximate) posterior probabil-

ity), see Figure 9. More precisely, for each datapoint ~yn we use the ~s∗ ∈ K(n) that

has the highest value for the truncated posterior qn (~s) and we reconstruct the datapoint

using the mean of the noise model ŷn = W~s∗. Since the datapoints were selected

as consecutive patches of the original recording with a 50% overlap it was necessary

to find a sensible way to appropriately reconstruct the overlapping region. We used

the reconstruction contributed by the latent vector with the highest truncated poste-

rior to determine the reconstruction at the overlapping region, i.e. ŷ+
n = W+~s∗ with

~s∗ = argmax~s∗{qn (~s∗) , qn+1 (~s∗)} where ~y+
n is the last 50% of the vector ~y and W+

the corresponding part of the rows of the W matrix. In Figure 9 A, we present the

reconstruction (red line) of the original extra-cellular signal (blue line). The decompo-

sition of the reconstruction in terms of generative fields (corresponding to the inferred

states ~s∗ is visualized in Figure 9 B, C, D.
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Figure 8: Graphical representation of our treatment of a time series signal. We separate

the time series in segments and each datapoint for DSC is a patch of the time series that

starts at the first observation of each segment and covers two consecutive segments. To

reconstruct a datapoint we use W~s∗, where ~s∗ is the MAP vector for each datapoint. To

reconstruct a segment that appears in more than one datapoint we use the reconstructed

values of the datapoint with the highest approximate posterior.

In Figure 10, we show the difference between the reconstructed time series and

the original. From the result, we observe that the model does very well at explaining

background activity, however, on the locations of some action potentials it appears that

there is still relatively high uncertainty. Potentially, the relative frequency of spikes to

background is very low and therefore making the spikes a rare event and not captured

very well by the model. One could improve on that by either creating higher overlap

between consecutive patches allowing the dictionary to explain more details on the po-

tential axis rather than the time axis or to use some spike sorting preprocessing routine,

such as spike detection (Quiroga et al., 2004). In Figure 10 C, we see the corresponding

IC recording. Note that only two spikes belong to the targeted neuron.
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Figure 9: A Reconstruction results of an EC recording. B-D Dictionary elements used

to reconstruct the signal. The time-axis are aligned - the plots B-D represent three

consecutive datapoints with 50% overlap. The text above each line denotes the element

id times the scaling factor. The green(red) segments of the elements were used(cut out)

to reconstruct the corresponding part of the time series.
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Figure 10: A Reconstruction results of an EC recording. B The Difference between the

reconstructed and the original signal. C Time-aligned IC recording - only two of the

three clear spikes in A correspond to a spike from the targeted neuron. D The energy

contained in each reconstructed segment estimated using
∑

h sh
1
T

∑
d |Wdh|.

Part of a spike sorting task is spike identification. Spike identification is usually
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performed using a threshold over the signal that is taken in a rather ad-hoc way to be at

5 times the standard deviation of the signal, e.g. see 5× σorig in Figure 10 A (Quiroga

et al., 2004). In Figure 10 D, we propose an alternative based on the DSC model. The

barplot shows the sum of the l1 norm of all active dictionary elements at that point scaled

by the corresponding latent, i.e.
∑

h sh
1
T

∑
d |Wdh| for sh ∈ ~s∗ where ~s∗ is the highest

posterior latent vector. We expect this quantity to be a better spike detection measure

since it is invariant of noise in the signal. For instance, if the neuron was spiking more

frequently the threshold 5× σorig we see in Figure 10 A would increase but 5× σmodel

would remain the same because the spikes would be explained by the latent ~s∗. That

means the threshold, 5×σorig, applied in the signal varies with the neuron firing rate but

any threshold imposed on Figure 10 D would only be affected very mildly by variations

in the neuron firing rate.

3.4 Audio Data

For our final experimental setting we applied the algorithm to audio data of human

speech. We used the TIMIT database (Garofolo et al., 1993) to extract N = 100 000

datapoints ~y(n) in the form of D = 60-dimensional consecutive waveforms with an

overlap of 50%. We used H = 100 hidden variables to describe the data under the DSC

generative model with a configuration Φ = {−2,−1, 0, 1, 2}.

For the training, we initialize each column of the dictionary matrix W ∈ RD×H

using a non silent datapoint, defined as a datapoint with a norm greater than 1, i.e.

‖~y(n)‖1 > 1. The prior parameter ~π was initialized such that p (sh = 0) = (H − 1) /H

and the probabilities of the non zero states were randomly drawn from a uniform dis-
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tribution under the constraint that
∑

h p (sh) = 1. The scale of the noise model σ was

initialized as the average standard deviation of each observed variable.

We ran the DSC algorithm for 200 iteration and verified convergence by a stability

check of the parameters over EM iterations. During the run we used an annealing

schedule described in (Ueda and Nakano, 1998) with the annealing parameter starting

at β = 10 and decaying it linearly to 1 by iteration 50. We also avoided datapoint

cutting until iteration 20 and then proceeded to linearly decrease the datapoints to |M |

by iteration 80 as per the algorithm description in section 2.

After convergence we noticed that the learned dictionary, see Figure 11, is com-

posed of both temporally localized components and global components. The dictionary

components are frequently constrained to a single frequency although frequency mix-

ing is not unlikely. The prior emerges to be symmetric around zero even thought no

such constraint was imposed by the model and we also see a considerable decrease in

the scale of the noise model which suggests a good fit.
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Figure 11: Columns of dictionary matrix, W , after convergence of the algorithm.
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A B

Figure 12: A prior parameters at convergence. B the evolution of the standard deviation

of the model during ET algorithm iterations.

Similarly to the neural data analysis section 3.3, we used the reconstruction of a time

series segment to evaluate how well we were able to fit the data. Once more, for each

datapoint ~yn we use the ~s∗ ∈ K(n) that has the highest value for the truncated posterior

qn (~s) and we reconstruct the datapoint using the mean of the noise model ŷn = W~s∗.

For the overlapping region we, again, use the reconstruction of the data point with the

highest truncated posterior for ~s∗. In Figure 13 A, we can see the reconstruction (red

line) of the original waveform (blue line). The decomposition of the reconstruction can

be seen in the following to subplots B, C, D over 3 consecutive datapoints n−1, n, n+1

respectively. The vertical lines are aligned in time across the four subplots and they

represent the time limits for the reconstructed patches
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Figure 13: A Reconstruction results of an audio waveform. B-D Dictionary elements

used to reconstruct the signal. The time-axis are aligned - the plots B-D represent

three consecutive datapoints. The text above each line denotes the element id times

the scaling factor. The green(red) segments of the elements were used(rejected) to

reconstruct the corresponding part of the time series.
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The red lines, in Figures 13 B-D, represent the reconstruction of the component with

the highest truncated posterior from two consecutive datapoints - used to reconstruct the

datapoint. The blue lines represent the component with the lower truncated posterior -

rejected for the reconstruction.

4 Discussion

We have proposed a novel sparse coding algorithm with discrete latent variables, and

we have shown that we are capable of efficiently learning model parameters for gener-

ative fields, noise and of the model’s discrete prior distribution. Efficient learning was

realized by adapting truncated approximations (ET; Lücke and Eggert, 2010) to work

on latent spaces of multiple discrete states.

In this section we will discuss the interpretation of discrete latents in the Discrete

Sparse Coding setting, the significance of varying discrete state spaces in image mod-

eling, the properties that make a Discrete Sparse Coding algorithm relevant to spike

analysis of neural data, and the efficiency of discrete sparse coding in fitting audio

waveform.

Discrete latent variables for Sparse Coding. Sparse Coding algorithms were origi-

nally proposed as a method that deviates from traditional Gaussian encoding schemes

to make encoding more selective to an axis and therefore implicitly forcing the features

to be more descriptive of a given data structure. Constraining the hidden space to binary

values provides an on/off encoding scheme that is selective to image structure aligned

with standard Sparse Coding. Discretizing in an arbitrary domain, however, utilizes the
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sparse coding principle to learn structure in the scale space of the data that would oth-

erwise have been neglected or averaged out, for instance if we used continuous scaling

values. The work presented in this paper shows that it is possible to efficiently learn

a high dimensional discrete sparse coding model. Furthermore, we have shown that it

is possible to learn a wider range of parameters than typical sparse coding algorithms

such as the scale of the noise model and, more importantly here, parameters of a flexible

prior.

Image Encoding. We have shown that our algorithm was able to scale to several real

world high dimensional tasks. For image encoding, we have verified the functional-

ity of our algorithm by first replicating previous (Henniges et al., 2010) and prelimi-

nary results (Exarchakis et al., 2012) using specific configurations of the DSC model.

Furthermore, we have shown that scaling invariance in image encoding allows the fil-

ters to specialize in image structure rather than pixel intensity. Learning the prior pa-

rameters in different configurations of DSC has also shown us the distribution of the

learned dictionary in scale space without constraints on the functional form like the

ones commonly imposed by sparse coding algorithms with continuous latents (e.g.,

Laplace distribution/l1 sparsity penalty). Identifying the appropriate shape for the prior

of the SC latents has been a persistent research area in natural image statistics research

(Olshausen and Millman, 2000; Hyvärinen et al., 2005; Berkes et al., 2008; Mohamed

et al., 2010; Goodfellow et al., 2013; Sheikh et al., 2014). Since the prior of DSC does

not define a density function and it can take arbitrary discrete values, we can use it to

try and sketch the necessary qualities of a natural image prior.
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The asymmetric prior of aDSC with unequally spaced values was explicitly moti-

vated by neurophysiological data (Watson and Solomon, 1997; Legge and Foley, 1980).

Asymmetric continuous priors pose considerable challenges for standard training schemes

of sparse coding, and they have (to the knowledge of the authors) not been investigated

for image patches. Notably, such a discrete prior (with learned probabilities as shown

in Figure 5), shows the highest localization of generative fields which suggests that it

can capture detailed image properties. Furthermore, it shows the highest number of

‘globular’ fields which were found to frequently occur in physiological data (Ringach,

2002). Our results may therefore be taken as motivating more research on asymmetric

priors, with increasingly large-scale applications (larger number of fields, more discrete

values, larger patch-sizes), in depth statistical analysis of fields and detailed compari-

son with a variety of physiological measurements. The configuration of dDSC uses five

non-negative latent values and results in the best value for image patch reconstruction

(Figure 6A). Notably, the learned probabilities support a heavy-tail distribution simi-

larly to those used for standard sparse coding. The symmetric configuration of tDSC

also results in an (approximately) symmetric distribution of prior mass for negative and

positive values. Taken together, tDSC and dDSC may therefore be taken as support,

e.g., for standard Laplace priors. Compared to aDSC, the results for tDSC and bDSC

show less localized generative fields, and lower amounts of globular fields. Function-

ally, a future research direction may be the combination of DSC with model selection

approaches in order to estimate their match to image patch data in a grounded way. This

may also provide more evidence for encoding strategies observed in physiological data.

In general, it is important to note, however, that convergence to local optima has to
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be considered for all sparse coding approaches. Also for DSC we have observed local

optima including for artificial data, making it difficult to guarantee the optimality of the

learned shapes. Also note, that the shapes emerge given the data distributions modeled

by the DSC data model. While being general for discrete data, they do use standard

assumptions of linear superposition and Gaussian noise model. These assumptions are

shared with the large majority of sparse coding approaches but alternative models have

been suggested in the past (Malo et al., 2006; Lücke and Sahani, 2008; Bornschein

et al., 2013; Henniges et al., 2014; Frolov et al., 2016).

Discrete Latent variables for Neural Data Analysis. We used neural data to eval-

uate the performance of our algorithm due to their popular interpretation as sequences

of discrete events. In this analysis, we showed that DSC can learn spike and sub-spike

features that sufficiently describe neural recordings. Furthermore, carefully selecting

the scale space makes it possible to discern physiological characteristics of temporal

alignment, for instance whether a given spike is the initial event or a secondary spike in

a spike burst. Notably, one of the most unique features of our algorithm, learning prior

parameters, was very informative about the structure of extra-cellular (EC) recordings.

The learned prior interprets EC recordings as being composed of a multitude of spiking

patterns coming from a population of neurons around the targeted neuron. Furthermore,

the fact that we can learn a Gaussian noise model distinct from the spiking activity pro-

vides a more clear separation of noise from spikes than those traditionally seen in spike

sorting tasks (Quiroga et al., 2004).
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Discrete Latent variables for Audio Data. The DSC algorithm was fitted to audio

data successfully. The reconstruction has shown intelligible speech even though we

did not use any hand crafted features of human speech suggesting that we were able

to learn elementary short-time speech primitives. We did not extend our study beyond

learning primitives and studying elementary reconstruction. Our results may motivate

future research on audio compression using estimated discrete value, however. Any

learned probabilities and unequally spaced discretization values may be of interest for

efficient speech encoding, for instance. Speech reconstruction would than use averages

of overlapping reconstructions as is usual, e.g., for inpainting methods. Such and other

post-processing methods would warrant a smooth speech reconstruction but a detailed

application would go beyond the purpose of this study.

Conclusion. To conclude we have derived, implemented and tested a novel sparse

coding algorithm. Whenever it is reasonable to assume that the hidden variables are

discrete, the studied approach offers itself to learn a statistical data model. We have

shown applicability to data with discrete causes, and we have shown how the learned

prior shapes can also be used as discretized versions for latents with presumably rather

continuous latents. No other sparse coding model for discrete latents (other than bi-

nary) has previously been studied. Furthermore, our model covers the general class of

(finite) discrete priors under the canonical sparse coding assumptions of iid and sparsely

distributed latents. Discrete Sparse Coding can be used in latent variable tasks where

the prior distribution is expected to be sparse and discrete and in latent variable task

in which the structure of a sparse prior is not known. In the first case, the Discrete
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Sparse Coding algorithm in its various configurations can fit any discrete tiling of the

prior space that a given data set may necessitate. In the second case, the here studied

approach can provide a proxy prior distribution for continuous latents while it does not

impose constraints on the shape of the prior distribution.
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